This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof shortened by AV, 9-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rescabs.c | |- ( ph -> C e. V ) |
|
| rescabs.h | |- ( ph -> H Fn ( S X. S ) ) |
||
| rescabs.j | |- ( ph -> J Fn ( T X. T ) ) |
||
| rescabs.s | |- ( ph -> S e. W ) |
||
| rescabs.t | |- ( ph -> T C_ S ) |
||
| Assertion | rescabs | |- ( ph -> ( ( C |`cat H ) |`cat J ) = ( C |`cat J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescabs.c | |- ( ph -> C e. V ) |
|
| 2 | rescabs.h | |- ( ph -> H Fn ( S X. S ) ) |
|
| 3 | rescabs.j | |- ( ph -> J Fn ( T X. T ) ) |
|
| 4 | rescabs.s | |- ( ph -> S e. W ) |
|
| 5 | rescabs.t | |- ( ph -> T C_ S ) |
|
| 6 | eqid | |- ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`cat J ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`cat J ) |
|
| 7 | ovexd | |- ( ph -> ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) e. _V ) |
|
| 8 | 4 5 | ssexd | |- ( ph -> T e. _V ) |
| 9 | 6 7 8 3 | rescval2 | |- ( ph -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`cat J ) = ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 10 | simpr | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( Base ` ( C |`s S ) ) C_ T ) |
|
| 11 | ovexd | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) e. _V ) |
|
| 12 | 8 | adantr | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> T e. _V ) |
| 13 | eqid | |- ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) |
|
| 14 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 15 | slotsbhcdif | |- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
|
| 16 | 15 | simp1i | |- ( Base ` ndx ) =/= ( Hom ` ndx ) |
| 17 | 14 16 | setsnid | |- ( Base ` ( C |`s S ) ) = ( Base ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 18 | 13 17 | ressid2 | |- ( ( ( Base ` ( C |`s S ) ) C_ T /\ ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) e. _V /\ T e. _V ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 19 | 10 11 12 18 | syl3anc | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 20 | 19 | oveq1d | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 21 | ovex | |- ( C |`s S ) e. _V |
|
| 22 | 8 8 | xpexd | |- ( ph -> ( T X. T ) e. _V ) |
| 23 | 3 22 | fnexd | |- ( ph -> J e. _V ) |
| 24 | 23 | adantr | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> J e. _V ) |
| 25 | setsabs | |- ( ( ( C |`s S ) e. _V /\ J e. _V ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , J >. ) ) |
|
| 26 | 21 24 25 | sylancr | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 27 | eqid | |- ( C |`s S ) = ( C |`s S ) |
|
| 28 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 29 | 27 28 | ressbas | |- ( S e. W -> ( S i^i ( Base ` C ) ) = ( Base ` ( C |`s S ) ) ) |
| 30 | 4 29 | syl | |- ( ph -> ( S i^i ( Base ` C ) ) = ( Base ` ( C |`s S ) ) ) |
| 31 | 30 | sseq1d | |- ( ph -> ( ( S i^i ( Base ` C ) ) C_ T <-> ( Base ` ( C |`s S ) ) C_ T ) ) |
| 32 | 31 | biimpar | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( S i^i ( Base ` C ) ) C_ T ) |
| 33 | inss2 | |- ( S i^i ( Base ` C ) ) C_ ( Base ` C ) |
|
| 34 | 33 | a1i | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( S i^i ( Base ` C ) ) C_ ( Base ` C ) ) |
| 35 | 32 34 | ssind | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( S i^i ( Base ` C ) ) C_ ( T i^i ( Base ` C ) ) ) |
| 36 | 5 | adantr | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> T C_ S ) |
| 37 | 36 | ssrind | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( T i^i ( Base ` C ) ) C_ ( S i^i ( Base ` C ) ) ) |
| 38 | 35 37 | eqssd | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( S i^i ( Base ` C ) ) = ( T i^i ( Base ` C ) ) ) |
| 39 | 38 | oveq2d | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( C |`s ( S i^i ( Base ` C ) ) ) = ( C |`s ( T i^i ( Base ` C ) ) ) ) |
| 40 | 4 | adantr | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> S e. W ) |
| 41 | 28 | ressinbas | |- ( S e. W -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
| 42 | 40 41 | syl | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
| 43 | 28 | ressinbas | |- ( T e. _V -> ( C |`s T ) = ( C |`s ( T i^i ( Base ` C ) ) ) ) |
| 44 | 12 43 | syl | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( C |`s T ) = ( C |`s ( T i^i ( Base ` C ) ) ) ) |
| 45 | 39 42 44 | 3eqtr4d | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( C |`s S ) = ( C |`s T ) ) |
| 46 | 45 | oveq1d | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 47 | 20 26 46 | 3eqtrd | |- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 48 | simpr | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> -. ( Base ` ( C |`s S ) ) C_ T ) |
|
| 49 | ovexd | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) e. _V ) |
|
| 50 | 8 | adantr | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> T e. _V ) |
| 51 | 13 17 | ressval2 | |- ( ( -. ( Base ` ( C |`s S ) ) C_ T /\ ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) e. _V /\ T e. _V ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) ) |
| 52 | 48 49 50 51 | syl3anc | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) ) |
| 53 | ovexd | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( C |`s S ) e. _V ) |
|
| 54 | 16 | necomi | |- ( Hom ` ndx ) =/= ( Base ` ndx ) |
| 55 | 54 | a1i | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( Hom ` ndx ) =/= ( Base ` ndx ) ) |
| 56 | 4 4 | xpexd | |- ( ph -> ( S X. S ) e. _V ) |
| 57 | 2 56 | fnexd | |- ( ph -> H e. _V ) |
| 58 | 57 | adantr | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> H e. _V ) |
| 59 | fvex | |- ( Base ` ( C |`s S ) ) e. _V |
|
| 60 | 59 | inex2 | |- ( T i^i ( Base ` ( C |`s S ) ) ) e. _V |
| 61 | 60 | a1i | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( T i^i ( Base ` ( C |`s S ) ) ) e. _V ) |
| 62 | fvex | |- ( Hom ` ndx ) e. _V |
|
| 63 | fvex | |- ( Base ` ndx ) e. _V |
|
| 64 | 62 63 | setscom | |- ( ( ( ( C |`s S ) e. _V /\ ( Hom ` ndx ) =/= ( Base ` ndx ) ) /\ ( H e. _V /\ ( T i^i ( Base ` ( C |`s S ) ) ) e. _V ) ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) = ( ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 65 | 53 55 58 61 64 | syl22anc | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) = ( ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 66 | eqid | |- ( ( C |`s S ) |`s T ) = ( ( C |`s S ) |`s T ) |
|
| 67 | eqid | |- ( Base ` ( C |`s S ) ) = ( Base ` ( C |`s S ) ) |
|
| 68 | 66 67 | ressval2 | |- ( ( -. ( Base ` ( C |`s S ) ) C_ T /\ ( C |`s S ) e. _V /\ T e. _V ) -> ( ( C |`s S ) |`s T ) = ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) ) |
| 69 | 48 53 50 68 | syl3anc | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) |`s T ) = ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) ) |
| 70 | 5 | adantr | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> T C_ S ) |
| 71 | ressabs | |- ( ( S e. W /\ T C_ S ) -> ( ( C |`s S ) |`s T ) = ( C |`s T ) ) |
|
| 72 | 4 70 71 | syl2an2r | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) |`s T ) = ( C |`s T ) ) |
| 73 | 69 72 | eqtr3d | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) = ( C |`s T ) ) |
| 74 | 73 | oveq1d | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) sSet <. ( Hom ` ndx ) , H >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 75 | 52 65 74 | 3eqtrd | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 76 | 75 | oveq1d | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( ( C |`s T ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 77 | ovex | |- ( C |`s T ) e. _V |
|
| 78 | 23 | adantr | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> J e. _V ) |
| 79 | setsabs | |- ( ( ( C |`s T ) e. _V /\ J e. _V ) -> ( ( ( C |`s T ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
|
| 80 | 77 78 79 | sylancr | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s T ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 81 | 76 80 | eqtrd | |- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 82 | 47 81 | pm2.61dan | |- ( ph -> ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 83 | 9 82 | eqtrd | |- ( ph -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`cat J ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 84 | eqid | |- ( C |`cat H ) = ( C |`cat H ) |
|
| 85 | 84 1 4 2 | rescval2 | |- ( ph -> ( C |`cat H ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 86 | 85 | oveq1d | |- ( ph -> ( ( C |`cat H ) |`cat J ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`cat J ) ) |
| 87 | eqid | |- ( C |`cat J ) = ( C |`cat J ) |
|
| 88 | 87 1 8 3 | rescval2 | |- ( ph -> ( C |`cat J ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 89 | 83 86 88 | 3eqtr4d | |- ( ph -> ( ( C |`cat H ) |`cat J ) = ( C |`cat J ) ) |