This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressabs | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑋 ) → 𝐵 ∈ V ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
| 3 | ressress | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) | |
| 4 | 2 3 | syldan | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 5 | simpr | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) | |
| 6 | sseqin2 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) | |
| 7 | 5 6 | sylib | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s 𝐵 ) ) |
| 9 | 4 8 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s 𝐵 ) ) |