This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 15-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recexsrlem | ⊢ ( 0R <R 𝐴 → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelsr | ⊢ <R ⊆ ( R × R ) | |
| 2 | 1 | brel | ⊢ ( 0R <R 𝐴 → ( 0R ∈ R ∧ 𝐴 ∈ R ) ) |
| 3 | 2 | simprd | ⊢ ( 0R <R 𝐴 → 𝐴 ∈ R ) |
| 4 | df-nr | ⊢ R = ( ( P × P ) / ~R ) | |
| 5 | breq2 | ⊢ ( [ 〈 𝑦 , 𝑧 〉 ] ~R = 𝐴 → ( 0R <R [ 〈 𝑦 , 𝑧 〉 ] ~R ↔ 0R <R 𝐴 ) ) | |
| 6 | oveq1 | ⊢ ( [ 〈 𝑦 , 𝑧 〉 ] ~R = 𝐴 → ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = ( 𝐴 ·R 𝑥 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( [ 〈 𝑦 , 𝑧 〉 ] ~R = 𝐴 → ( ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ↔ ( 𝐴 ·R 𝑥 ) = 1R ) ) |
| 8 | 7 | rexbidv | ⊢ ( [ 〈 𝑦 , 𝑧 〉 ] ~R = 𝐴 → ( ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ↔ ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) ) |
| 9 | 5 8 | imbi12d | ⊢ ( [ 〈 𝑦 , 𝑧 〉 ] ~R = 𝐴 → ( ( 0R <R [ 〈 𝑦 , 𝑧 〉 ] ~R → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) ↔ ( 0R <R 𝐴 → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) ) ) |
| 10 | gt0srpr | ⊢ ( 0R <R [ 〈 𝑦 , 𝑧 〉 ] ~R ↔ 𝑧 <P 𝑦 ) | |
| 11 | ltexpri | ⊢ ( 𝑧 <P 𝑦 → ∃ 𝑤 ∈ P ( 𝑧 +P 𝑤 ) = 𝑦 ) | |
| 12 | 10 11 | sylbi | ⊢ ( 0R <R [ 〈 𝑦 , 𝑧 〉 ] ~R → ∃ 𝑤 ∈ P ( 𝑧 +P 𝑤 ) = 𝑦 ) |
| 13 | recexpr | ⊢ ( 𝑤 ∈ P → ∃ 𝑣 ∈ P ( 𝑤 ·P 𝑣 ) = 1P ) | |
| 14 | 1pr | ⊢ 1P ∈ P | |
| 15 | addclpr | ⊢ ( ( 𝑣 ∈ P ∧ 1P ∈ P ) → ( 𝑣 +P 1P ) ∈ P ) | |
| 16 | 14 15 | mpan2 | ⊢ ( 𝑣 ∈ P → ( 𝑣 +P 1P ) ∈ P ) |
| 17 | enrex | ⊢ ~R ∈ V | |
| 18 | 17 4 | ecopqsi | ⊢ ( ( ( 𝑣 +P 1P ) ∈ P ∧ 1P ∈ P ) → [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ∈ R ) |
| 19 | 16 14 18 | sylancl | ⊢ ( 𝑣 ∈ P → [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ∈ R ) |
| 20 | 19 | ad2antlr | ⊢ ( ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ∈ R ) |
| 21 | 16 14 | jctir | ⊢ ( 𝑣 ∈ P → ( ( 𝑣 +P 1P ) ∈ P ∧ 1P ∈ P ) ) |
| 22 | 21 | anim2i | ⊢ ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) → ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ ( ( 𝑣 +P 1P ) ∈ P ∧ 1P ∈ P ) ) ) |
| 23 | 22 | adantr | ⊢ ( ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ ( ( 𝑣 +P 1P ) ∈ P ∧ 1P ∈ P ) ) ) |
| 24 | mulsrpr | ⊢ ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ ( ( 𝑣 +P 1P ) ∈ P ∧ 1P ∈ P ) ) → ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ) = [ 〈 ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) 〉 ] ~R ) | |
| 25 | 23 24 | syl | ⊢ ( ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ) = [ 〈 ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) 〉 ] ~R ) |
| 26 | oveq1 | ⊢ ( ( 𝑧 +P 𝑤 ) = 𝑦 → ( ( 𝑧 +P 𝑤 ) ·P 𝑣 ) = ( 𝑦 ·P 𝑣 ) ) | |
| 27 | 26 | eqcomd | ⊢ ( ( 𝑧 +P 𝑤 ) = 𝑦 → ( 𝑦 ·P 𝑣 ) = ( ( 𝑧 +P 𝑤 ) ·P 𝑣 ) ) |
| 28 | vex | ⊢ 𝑧 ∈ V | |
| 29 | vex | ⊢ 𝑤 ∈ V | |
| 30 | vex | ⊢ 𝑣 ∈ V | |
| 31 | mulcompr | ⊢ ( 𝑢 ·P 𝑓 ) = ( 𝑓 ·P 𝑢 ) | |
| 32 | distrpr | ⊢ ( 𝑢 ·P ( 𝑓 +P 𝑥 ) ) = ( ( 𝑢 ·P 𝑓 ) +P ( 𝑢 ·P 𝑥 ) ) | |
| 33 | 28 29 30 31 32 | caovdir | ⊢ ( ( 𝑧 +P 𝑤 ) ·P 𝑣 ) = ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑣 ) ) |
| 34 | oveq2 | ⊢ ( ( 𝑤 ·P 𝑣 ) = 1P → ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑣 ) ) = ( ( 𝑧 ·P 𝑣 ) +P 1P ) ) | |
| 35 | 33 34 | eqtrid | ⊢ ( ( 𝑤 ·P 𝑣 ) = 1P → ( ( 𝑧 +P 𝑤 ) ·P 𝑣 ) = ( ( 𝑧 ·P 𝑣 ) +P 1P ) ) |
| 36 | 27 35 | sylan9eqr | ⊢ ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( 𝑦 ·P 𝑣 ) = ( ( 𝑧 ·P 𝑣 ) +P 1P ) ) |
| 37 | 36 | oveq1d | ⊢ ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) = ( ( ( 𝑧 ·P 𝑣 ) +P 1P ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) ) |
| 38 | ovex | ⊢ ( 𝑧 ·P 𝑣 ) ∈ V | |
| 39 | 14 | elexi | ⊢ 1P ∈ V |
| 40 | ovex | ⊢ ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ∈ V | |
| 41 | addcompr | ⊢ ( 𝑢 +P 𝑓 ) = ( 𝑓 +P 𝑢 ) | |
| 42 | addasspr | ⊢ ( ( 𝑢 +P 𝑓 ) +P 𝑥 ) = ( 𝑢 +P ( 𝑓 +P 𝑥 ) ) | |
| 43 | 38 39 40 41 42 | caov32 | ⊢ ( ( ( 𝑧 ·P 𝑣 ) +P 1P ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) = ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) |
| 44 | 37 43 | eqtrdi | ⊢ ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) = ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) ) |
| 45 | 44 | oveq1d | ⊢ ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) = ( ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) +P 1P ) ) |
| 46 | addasspr | ⊢ ( ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) +P 1P ) = ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P ( 1P +P 1P ) ) | |
| 47 | 45 46 | eqtrdi | ⊢ ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) = ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P ( 1P +P 1P ) ) ) |
| 48 | distrpr | ⊢ ( 𝑦 ·P ( 𝑣 +P 1P ) ) = ( ( 𝑦 ·P 𝑣 ) +P ( 𝑦 ·P 1P ) ) | |
| 49 | 48 | oveq1i | ⊢ ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) = ( ( ( 𝑦 ·P 𝑣 ) +P ( 𝑦 ·P 1P ) ) +P ( 𝑧 ·P 1P ) ) |
| 50 | addasspr | ⊢ ( ( ( 𝑦 ·P 𝑣 ) +P ( 𝑦 ·P 1P ) ) +P ( 𝑧 ·P 1P ) ) = ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) | |
| 51 | 49 50 | eqtri | ⊢ ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) = ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) |
| 52 | 51 | oveq1i | ⊢ ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) +P 1P ) = ( ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) |
| 53 | distrpr | ⊢ ( 𝑧 ·P ( 𝑣 +P 1P ) ) = ( ( 𝑧 ·P 𝑣 ) +P ( 𝑧 ·P 1P ) ) | |
| 54 | 53 | oveq2i | ⊢ ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) = ( ( 𝑦 ·P 1P ) +P ( ( 𝑧 ·P 𝑣 ) +P ( 𝑧 ·P 1P ) ) ) |
| 55 | ovex | ⊢ ( 𝑦 ·P 1P ) ∈ V | |
| 56 | ovex | ⊢ ( 𝑧 ·P 1P ) ∈ V | |
| 57 | 55 38 56 41 42 | caov12 | ⊢ ( ( 𝑦 ·P 1P ) +P ( ( 𝑧 ·P 𝑣 ) +P ( 𝑧 ·P 1P ) ) ) = ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) |
| 58 | 54 57 | eqtri | ⊢ ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) = ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) |
| 59 | 58 | oveq1i | ⊢ ( ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) +P ( 1P +P 1P ) ) = ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P ( 1P +P 1P ) ) |
| 60 | 47 52 59 | 3eqtr4g | ⊢ ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) +P 1P ) = ( ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) +P ( 1P +P 1P ) ) ) |
| 61 | mulclpr | ⊢ ( ( 𝑦 ∈ P ∧ ( 𝑣 +P 1P ) ∈ P ) → ( 𝑦 ·P ( 𝑣 +P 1P ) ) ∈ P ) | |
| 62 | 16 61 | sylan2 | ⊢ ( ( 𝑦 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑦 ·P ( 𝑣 +P 1P ) ) ∈ P ) |
| 63 | mulclpr | ⊢ ( ( 𝑧 ∈ P ∧ 1P ∈ P ) → ( 𝑧 ·P 1P ) ∈ P ) | |
| 64 | 14 63 | mpan2 | ⊢ ( 𝑧 ∈ P → ( 𝑧 ·P 1P ) ∈ P ) |
| 65 | addclpr | ⊢ ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) ∈ P ∧ ( 𝑧 ·P 1P ) ∈ P ) → ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) ∈ P ) | |
| 66 | 62 64 65 | syl2an | ⊢ ( ( ( 𝑦 ∈ P ∧ 𝑣 ∈ P ) ∧ 𝑧 ∈ P ) → ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) ∈ P ) |
| 67 | 66 | an32s | ⊢ ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) → ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) ∈ P ) |
| 68 | mulclpr | ⊢ ( ( 𝑦 ∈ P ∧ 1P ∈ P ) → ( 𝑦 ·P 1P ) ∈ P ) | |
| 69 | 14 68 | mpan2 | ⊢ ( 𝑦 ∈ P → ( 𝑦 ·P 1P ) ∈ P ) |
| 70 | mulclpr | ⊢ ( ( 𝑧 ∈ P ∧ ( 𝑣 +P 1P ) ∈ P ) → ( 𝑧 ·P ( 𝑣 +P 1P ) ) ∈ P ) | |
| 71 | 16 70 | sylan2 | ⊢ ( ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑧 ·P ( 𝑣 +P 1P ) ) ∈ P ) |
| 72 | addclpr | ⊢ ( ( ( 𝑦 ·P 1P ) ∈ P ∧ ( 𝑧 ·P ( 𝑣 +P 1P ) ) ∈ P ) → ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ∈ P ) | |
| 73 | 69 71 72 | syl2an | ⊢ ( ( 𝑦 ∈ P ∧ ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) ) → ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ∈ P ) |
| 74 | 73 | anassrs | ⊢ ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) → ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ∈ P ) |
| 75 | 67 74 | jca | ⊢ ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) → ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) ∈ P ∧ ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ∈ P ) ) |
| 76 | addclpr | ⊢ ( ( 1P ∈ P ∧ 1P ∈ P ) → ( 1P +P 1P ) ∈ P ) | |
| 77 | 14 14 76 | mp2an | ⊢ ( 1P +P 1P ) ∈ P |
| 78 | 77 14 | pm3.2i | ⊢ ( ( 1P +P 1P ) ∈ P ∧ 1P ∈ P ) |
| 79 | enreceq | ⊢ ( ( ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) ∈ P ∧ ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ∈ P ) ∧ ( ( 1P +P 1P ) ∈ P ∧ 1P ∈ P ) ) → ( [ 〈 ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) 〉 ] ~R = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ↔ ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) +P 1P ) = ( ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) +P ( 1P +P 1P ) ) ) ) | |
| 80 | 75 78 79 | sylancl | ⊢ ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) → ( [ 〈 ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) 〉 ] ~R = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ↔ ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) +P 1P ) = ( ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) +P ( 1P +P 1P ) ) ) ) |
| 81 | 60 80 | imbitrrid | ⊢ ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) → ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → [ 〈 ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) 〉 ] ~R = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ) ) |
| 82 | 81 | imp | ⊢ ( ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → [ 〈 ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) 〉 ] ~R = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ) |
| 83 | 25 82 | eqtrd | ⊢ ( ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ) = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ) |
| 84 | df-1r | ⊢ 1R = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R | |
| 85 | 83 84 | eqtr4di | ⊢ ( ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ) = 1R ) |
| 86 | oveq2 | ⊢ ( 𝑥 = [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R → ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ) ) | |
| 87 | 86 | eqeq1d | ⊢ ( 𝑥 = [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R → ( ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ↔ ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ) = 1R ) ) |
| 88 | 87 | rspcev | ⊢ ( ( [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ∈ R ∧ ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ) = 1R ) → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) |
| 89 | 20 85 88 | syl2anc | ⊢ ( ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) |
| 90 | 89 | exp43 | ⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑣 ∈ P → ( ( 𝑤 ·P 𝑣 ) = 1P → ( ( 𝑧 +P 𝑤 ) = 𝑦 → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) ) ) ) |
| 91 | 90 | rexlimdv | ⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( ∃ 𝑣 ∈ P ( 𝑤 ·P 𝑣 ) = 1P → ( ( 𝑧 +P 𝑤 ) = 𝑦 → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) ) ) |
| 92 | 13 91 | syl5 | ⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑤 ∈ P → ( ( 𝑧 +P 𝑤 ) = 𝑦 → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) ) ) |
| 93 | 92 | rexlimdv | ⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( ∃ 𝑤 ∈ P ( 𝑧 +P 𝑤 ) = 𝑦 → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) ) |
| 94 | 12 93 | syl5 | ⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 0R <R [ 〈 𝑦 , 𝑧 〉 ] ~R → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) ) |
| 95 | 4 9 94 | ecoptocl | ⊢ ( 𝐴 ∈ R → ( 0R <R 𝐴 → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) ) |
| 96 | 3 95 | mpcom | ⊢ ( 0R <R 𝐴 → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) |