This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enreceq | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( [ 〈 𝐴 , 𝐵 〉 ] ~R = [ 〈 𝐶 , 𝐷 〉 ] ~R ↔ ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrer | ⊢ ~R Er ( P × P ) | |
| 2 | 1 | a1i | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ~R Er ( P × P ) ) |
| 3 | opelxpi | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → 〈 𝐴 , 𝐵 〉 ∈ ( P × P ) ) | |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → 〈 𝐴 , 𝐵 〉 ∈ ( P × P ) ) |
| 5 | 2 4 | erth | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( 〈 𝐴 , 𝐵 〉 ~R 〈 𝐶 , 𝐷 〉 ↔ [ 〈 𝐴 , 𝐵 〉 ] ~R = [ 〈 𝐶 , 𝐷 〉 ] ~R ) ) |
| 6 | enrbreq | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( 〈 𝐴 , 𝐵 〉 ~R 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ) ) | |
| 7 | 5 6 | bitr3d | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( [ 〈 𝐴 , 𝐵 〉 ] ~R = [ 〈 𝐶 , 𝐷 〉 ] ~R ↔ ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ) ) |