This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of Gleason p. 124. (Contributed by NM, 15-May-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recexpr | ⊢ ( 𝐴 ∈ P → ∃ 𝑥 ∈ P ( 𝐴 ·P 𝑥 ) = 1P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 <Q 𝑦 ↔ 𝑤 <Q 𝑦 ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ( 𝑤 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 3 | 2 | exbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ∃ 𝑦 ( 𝑤 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 4 | 3 | cbvabv | ⊢ { 𝑧 ∣ ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } = { 𝑤 ∣ ∃ 𝑦 ( 𝑤 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } |
| 5 | 4 | reclem2pr | ⊢ ( 𝐴 ∈ P → { 𝑧 ∣ ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } ∈ P ) |
| 6 | 4 | reclem4pr | ⊢ ( 𝐴 ∈ P → ( 𝐴 ·P { 𝑧 ∣ ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } ) = 1P ) |
| 7 | oveq2 | ⊢ ( 𝑥 = { 𝑧 ∣ ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } → ( 𝐴 ·P 𝑥 ) = ( 𝐴 ·P { 𝑧 ∣ ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑥 = { 𝑧 ∣ ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } → ( ( 𝐴 ·P 𝑥 ) = 1P ↔ ( 𝐴 ·P { 𝑧 ∣ ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } ) = 1P ) ) |
| 9 | 8 | rspcev | ⊢ ( ( { 𝑧 ∣ ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } ∈ P ∧ ( 𝐴 ·P { 𝑧 ∣ ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } ) = 1P ) → ∃ 𝑥 ∈ P ( 𝐴 ·P 𝑥 ) = 1P ) |
| 10 | 5 6 9 | syl2anc | ⊢ ( 𝐴 ∈ P → ∃ 𝑥 ∈ P ( 𝐴 ·P 𝑥 ) = 1P ) |