This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enrex | ⊢ ~R ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npex | ⊢ P ∈ V | |
| 2 | 1 1 | xpex | ⊢ ( P × P ) ∈ V |
| 3 | 2 2 | xpex | ⊢ ( ( P × P ) × ( P × P ) ) ∈ V |
| 4 | df-enr | ⊢ ~R = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) ) } | |
| 5 | opabssxp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) ) } ⊆ ( ( P × P ) × ( P × P ) ) | |
| 6 | 4 5 | eqsstri | ⊢ ~R ⊆ ( ( P × P ) × ( P × P ) ) |
| 7 | 3 6 | ssexi | ⊢ ~R ∈ V |