This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecoptocl.1 | ⊢ 𝑆 = ( ( 𝐵 × 𝐶 ) / 𝑅 ) | |
| ecoptocl.2 | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] 𝑅 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| ecoptocl.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝜑 ) | ||
| Assertion | ecoptocl | ⊢ ( 𝐴 ∈ 𝑆 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecoptocl.1 | ⊢ 𝑆 = ( ( 𝐵 × 𝐶 ) / 𝑅 ) | |
| 2 | ecoptocl.2 | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] 𝑅 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | ecoptocl.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝜑 ) | |
| 4 | elqsi | ⊢ ( 𝐴 ∈ ( ( 𝐵 × 𝐶 ) / 𝑅 ) → ∃ 𝑧 ∈ ( 𝐵 × 𝐶 ) 𝐴 = [ 𝑧 ] 𝑅 ) | |
| 5 | eqid | ⊢ ( 𝐵 × 𝐶 ) = ( 𝐵 × 𝐶 ) | |
| 6 | eceq1 | ⊢ ( 〈 𝑥 , 𝑦 〉 = 𝑧 → [ 〈 𝑥 , 𝑦 〉 ] 𝑅 = [ 𝑧 ] 𝑅 ) | |
| 7 | 6 | eqeq2d | ⊢ ( 〈 𝑥 , 𝑦 〉 = 𝑧 → ( 𝐴 = [ 〈 𝑥 , 𝑦 〉 ] 𝑅 ↔ 𝐴 = [ 𝑧 ] 𝑅 ) ) |
| 8 | 7 | imbi1d | ⊢ ( 〈 𝑥 , 𝑦 〉 = 𝑧 → ( ( 𝐴 = [ 〈 𝑥 , 𝑦 〉 ] 𝑅 → 𝜓 ) ↔ ( 𝐴 = [ 𝑧 ] 𝑅 → 𝜓 ) ) ) |
| 9 | 2 | eqcoms | ⊢ ( 𝐴 = [ 〈 𝑥 , 𝑦 〉 ] 𝑅 → ( 𝜑 ↔ 𝜓 ) ) |
| 10 | 3 9 | syl5ibcom | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝐴 = [ 〈 𝑥 , 𝑦 〉 ] 𝑅 → 𝜓 ) ) |
| 11 | 5 8 10 | optocl | ⊢ ( 𝑧 ∈ ( 𝐵 × 𝐶 ) → ( 𝐴 = [ 𝑧 ] 𝑅 → 𝜓 ) ) |
| 12 | 11 | rexlimiv | ⊢ ( ∃ 𝑧 ∈ ( 𝐵 × 𝐶 ) 𝐴 = [ 𝑧 ] 𝑅 → 𝜓 ) |
| 13 | 4 12 | syl | ⊢ ( 𝐴 ∈ ( ( 𝐵 × 𝐶 ) / 𝑅 ) → 𝜓 ) |
| 14 | 13 1 | eleq2s | ⊢ ( 𝐴 ∈ 𝑆 → 𝜓 ) |