This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 15-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recexsrlem | |- ( 0R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelsr | |- |
|
| 2 | 1 | brel | |- ( 0R |
| 3 | 2 | simprd | |- ( 0R |
| 4 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 5 | breq2 | |- ( [ <. y , z >. ] ~R = A -> ( 0R |
|
| 6 | oveq1 | |- ( [ <. y , z >. ] ~R = A -> ( [ <. y , z >. ] ~R .R x ) = ( A .R x ) ) |
|
| 7 | 6 | eqeq1d | |- ( [ <. y , z >. ] ~R = A -> ( ( [ <. y , z >. ] ~R .R x ) = 1R <-> ( A .R x ) = 1R ) ) |
| 8 | 7 | rexbidv | |- ( [ <. y , z >. ] ~R = A -> ( E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R <-> E. x e. R. ( A .R x ) = 1R ) ) |
| 9 | 5 8 | imbi12d | |- ( [ <. y , z >. ] ~R = A -> ( ( 0R |
| 10 | gt0srpr | |- ( 0R |
|
| 11 | ltexpri | |- ( z |
|
| 12 | 10 11 | sylbi | |- ( 0R |
| 13 | recexpr | |- ( w e. P. -> E. v e. P. ( w .P. v ) = 1P ) |
|
| 14 | 1pr | |- 1P e. P. |
|
| 15 | addclpr | |- ( ( v e. P. /\ 1P e. P. ) -> ( v +P. 1P ) e. P. ) |
|
| 16 | 14 15 | mpan2 | |- ( v e. P. -> ( v +P. 1P ) e. P. ) |
| 17 | enrex | |- ~R e. _V |
|
| 18 | 17 4 | ecopqsi | |- ( ( ( v +P. 1P ) e. P. /\ 1P e. P. ) -> [ <. ( v +P. 1P ) , 1P >. ] ~R e. R. ) |
| 19 | 16 14 18 | sylancl | |- ( v e. P. -> [ <. ( v +P. 1P ) , 1P >. ] ~R e. R. ) |
| 20 | 19 | ad2antlr | |- ( ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) /\ ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) ) -> [ <. ( v +P. 1P ) , 1P >. ] ~R e. R. ) |
| 21 | 16 14 | jctir | |- ( v e. P. -> ( ( v +P. 1P ) e. P. /\ 1P e. P. ) ) |
| 22 | 21 | anim2i | |- ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) -> ( ( y e. P. /\ z e. P. ) /\ ( ( v +P. 1P ) e. P. /\ 1P e. P. ) ) ) |
| 23 | 22 | adantr | |- ( ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) /\ ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) ) -> ( ( y e. P. /\ z e. P. ) /\ ( ( v +P. 1P ) e. P. /\ 1P e. P. ) ) ) |
| 24 | mulsrpr | |- ( ( ( y e. P. /\ z e. P. ) /\ ( ( v +P. 1P ) e. P. /\ 1P e. P. ) ) -> ( [ <. y , z >. ] ~R .R [ <. ( v +P. 1P ) , 1P >. ] ~R ) = [ <. ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) , ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) >. ] ~R ) |
|
| 25 | 23 24 | syl | |- ( ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) /\ ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) ) -> ( [ <. y , z >. ] ~R .R [ <. ( v +P. 1P ) , 1P >. ] ~R ) = [ <. ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) , ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) >. ] ~R ) |
| 26 | oveq1 | |- ( ( z +P. w ) = y -> ( ( z +P. w ) .P. v ) = ( y .P. v ) ) |
|
| 27 | 26 | eqcomd | |- ( ( z +P. w ) = y -> ( y .P. v ) = ( ( z +P. w ) .P. v ) ) |
| 28 | vex | |- z e. _V |
|
| 29 | vex | |- w e. _V |
|
| 30 | vex | |- v e. _V |
|
| 31 | mulcompr | |- ( u .P. f ) = ( f .P. u ) |
|
| 32 | distrpr | |- ( u .P. ( f +P. x ) ) = ( ( u .P. f ) +P. ( u .P. x ) ) |
|
| 33 | 28 29 30 31 32 | caovdir | |- ( ( z +P. w ) .P. v ) = ( ( z .P. v ) +P. ( w .P. v ) ) |
| 34 | oveq2 | |- ( ( w .P. v ) = 1P -> ( ( z .P. v ) +P. ( w .P. v ) ) = ( ( z .P. v ) +P. 1P ) ) |
|
| 35 | 33 34 | eqtrid | |- ( ( w .P. v ) = 1P -> ( ( z +P. w ) .P. v ) = ( ( z .P. v ) +P. 1P ) ) |
| 36 | 27 35 | sylan9eqr | |- ( ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) -> ( y .P. v ) = ( ( z .P. v ) +P. 1P ) ) |
| 37 | 36 | oveq1d | |- ( ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) -> ( ( y .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) = ( ( ( z .P. v ) +P. 1P ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) ) |
| 38 | ovex | |- ( z .P. v ) e. _V |
|
| 39 | 14 | elexi | |- 1P e. _V |
| 40 | ovex | |- ( ( y .P. 1P ) +P. ( z .P. 1P ) ) e. _V |
|
| 41 | addcompr | |- ( u +P. f ) = ( f +P. u ) |
|
| 42 | addasspr | |- ( ( u +P. f ) +P. x ) = ( u +P. ( f +P. x ) ) |
|
| 43 | 38 39 40 41 42 | caov32 | |- ( ( ( z .P. v ) +P. 1P ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) = ( ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. 1P ) |
| 44 | 37 43 | eqtrdi | |- ( ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) -> ( ( y .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) = ( ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. 1P ) ) |
| 45 | 44 | oveq1d | |- ( ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) -> ( ( ( y .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. 1P ) = ( ( ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. 1P ) +P. 1P ) ) |
| 46 | addasspr | |- ( ( ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. 1P ) +P. 1P ) = ( ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. ( 1P +P. 1P ) ) |
|
| 47 | 45 46 | eqtrdi | |- ( ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) -> ( ( ( y .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. 1P ) = ( ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. ( 1P +P. 1P ) ) ) |
| 48 | distrpr | |- ( y .P. ( v +P. 1P ) ) = ( ( y .P. v ) +P. ( y .P. 1P ) ) |
|
| 49 | 48 | oveq1i | |- ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) = ( ( ( y .P. v ) +P. ( y .P. 1P ) ) +P. ( z .P. 1P ) ) |
| 50 | addasspr | |- ( ( ( y .P. v ) +P. ( y .P. 1P ) ) +P. ( z .P. 1P ) ) = ( ( y .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) |
|
| 51 | 49 50 | eqtri | |- ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) = ( ( y .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) |
| 52 | 51 | oveq1i | |- ( ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) +P. 1P ) = ( ( ( y .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. 1P ) |
| 53 | distrpr | |- ( z .P. ( v +P. 1P ) ) = ( ( z .P. v ) +P. ( z .P. 1P ) ) |
|
| 54 | 53 | oveq2i | |- ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) = ( ( y .P. 1P ) +P. ( ( z .P. v ) +P. ( z .P. 1P ) ) ) |
| 55 | ovex | |- ( y .P. 1P ) e. _V |
|
| 56 | ovex | |- ( z .P. 1P ) e. _V |
|
| 57 | 55 38 56 41 42 | caov12 | |- ( ( y .P. 1P ) +P. ( ( z .P. v ) +P. ( z .P. 1P ) ) ) = ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) |
| 58 | 54 57 | eqtri | |- ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) = ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) |
| 59 | 58 | oveq1i | |- ( ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) +P. ( 1P +P. 1P ) ) = ( ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. ( 1P +P. 1P ) ) |
| 60 | 47 52 59 | 3eqtr4g | |- ( ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) -> ( ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) +P. 1P ) = ( ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) +P. ( 1P +P. 1P ) ) ) |
| 61 | mulclpr | |- ( ( y e. P. /\ ( v +P. 1P ) e. P. ) -> ( y .P. ( v +P. 1P ) ) e. P. ) |
|
| 62 | 16 61 | sylan2 | |- ( ( y e. P. /\ v e. P. ) -> ( y .P. ( v +P. 1P ) ) e. P. ) |
| 63 | mulclpr | |- ( ( z e. P. /\ 1P e. P. ) -> ( z .P. 1P ) e. P. ) |
|
| 64 | 14 63 | mpan2 | |- ( z e. P. -> ( z .P. 1P ) e. P. ) |
| 65 | addclpr | |- ( ( ( y .P. ( v +P. 1P ) ) e. P. /\ ( z .P. 1P ) e. P. ) -> ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) e. P. ) |
|
| 66 | 62 64 65 | syl2an | |- ( ( ( y e. P. /\ v e. P. ) /\ z e. P. ) -> ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) e. P. ) |
| 67 | 66 | an32s | |- ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) -> ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) e. P. ) |
| 68 | mulclpr | |- ( ( y e. P. /\ 1P e. P. ) -> ( y .P. 1P ) e. P. ) |
|
| 69 | 14 68 | mpan2 | |- ( y e. P. -> ( y .P. 1P ) e. P. ) |
| 70 | mulclpr | |- ( ( z e. P. /\ ( v +P. 1P ) e. P. ) -> ( z .P. ( v +P. 1P ) ) e. P. ) |
|
| 71 | 16 70 | sylan2 | |- ( ( z e. P. /\ v e. P. ) -> ( z .P. ( v +P. 1P ) ) e. P. ) |
| 72 | addclpr | |- ( ( ( y .P. 1P ) e. P. /\ ( z .P. ( v +P. 1P ) ) e. P. ) -> ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) e. P. ) |
|
| 73 | 69 71 72 | syl2an | |- ( ( y e. P. /\ ( z e. P. /\ v e. P. ) ) -> ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) e. P. ) |
| 74 | 73 | anassrs | |- ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) -> ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) e. P. ) |
| 75 | 67 74 | jca | |- ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) -> ( ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) e. P. /\ ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) e. P. ) ) |
| 76 | addclpr | |- ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. ) |
|
| 77 | 14 14 76 | mp2an | |- ( 1P +P. 1P ) e. P. |
| 78 | 77 14 | pm3.2i | |- ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) |
| 79 | enreceq | |- ( ( ( ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) e. P. /\ ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) e. P. ) /\ ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) ) -> ( [ <. ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) , ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) >. ] ~R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R <-> ( ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) +P. 1P ) = ( ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) +P. ( 1P +P. 1P ) ) ) ) |
|
| 80 | 75 78 79 | sylancl | |- ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) -> ( [ <. ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) , ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) >. ] ~R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R <-> ( ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) +P. 1P ) = ( ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) +P. ( 1P +P. 1P ) ) ) ) |
| 81 | 60 80 | imbitrrid | |- ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) -> ( ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) -> [ <. ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) , ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) >. ] ~R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) ) |
| 82 | 81 | imp | |- ( ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) /\ ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) ) -> [ <. ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) , ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) >. ] ~R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) |
| 83 | 25 82 | eqtrd | |- ( ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) /\ ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) ) -> ( [ <. y , z >. ] ~R .R [ <. ( v +P. 1P ) , 1P >. ] ~R ) = [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) |
| 84 | df-1r | |- 1R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R |
|
| 85 | 83 84 | eqtr4di | |- ( ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) /\ ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) ) -> ( [ <. y , z >. ] ~R .R [ <. ( v +P. 1P ) , 1P >. ] ~R ) = 1R ) |
| 86 | oveq2 | |- ( x = [ <. ( v +P. 1P ) , 1P >. ] ~R -> ( [ <. y , z >. ] ~R .R x ) = ( [ <. y , z >. ] ~R .R [ <. ( v +P. 1P ) , 1P >. ] ~R ) ) |
|
| 87 | 86 | eqeq1d | |- ( x = [ <. ( v +P. 1P ) , 1P >. ] ~R -> ( ( [ <. y , z >. ] ~R .R x ) = 1R <-> ( [ <. y , z >. ] ~R .R [ <. ( v +P. 1P ) , 1P >. ] ~R ) = 1R ) ) |
| 88 | 87 | rspcev | |- ( ( [ <. ( v +P. 1P ) , 1P >. ] ~R e. R. /\ ( [ <. y , z >. ] ~R .R [ <. ( v +P. 1P ) , 1P >. ] ~R ) = 1R ) -> E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R ) |
| 89 | 20 85 88 | syl2anc | |- ( ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) /\ ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) ) -> E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R ) |
| 90 | 89 | exp43 | |- ( ( y e. P. /\ z e. P. ) -> ( v e. P. -> ( ( w .P. v ) = 1P -> ( ( z +P. w ) = y -> E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R ) ) ) ) |
| 91 | 90 | rexlimdv | |- ( ( y e. P. /\ z e. P. ) -> ( E. v e. P. ( w .P. v ) = 1P -> ( ( z +P. w ) = y -> E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R ) ) ) |
| 92 | 13 91 | syl5 | |- ( ( y e. P. /\ z e. P. ) -> ( w e. P. -> ( ( z +P. w ) = y -> E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R ) ) ) |
| 93 | 92 | rexlimdv | |- ( ( y e. P. /\ z e. P. ) -> ( E. w e. P. ( z +P. w ) = y -> E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R ) ) |
| 94 | 12 93 | syl5 | |- ( ( y e. P. /\ z e. P. ) -> ( 0R |
| 95 | 4 9 94 | ecoptocl | |- ( A e. R. -> ( 0R |
| 96 | 3 95 | mpcom | |- ( 0R |