This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of Gleason p. 123. (Contributed by NM, 19-Nov-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcompr | ⊢ ( 𝐴 +P 𝐵 ) = ( 𝐵 +P 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plpv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 +P 𝐵 ) = { 𝑥 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑧 +Q 𝑦 ) } ) | |
| 2 | plpv | ⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐵 +P 𝐴 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑦 +Q 𝑧 ) } ) | |
| 3 | addcomnq | ⊢ ( 𝑦 +Q 𝑧 ) = ( 𝑧 +Q 𝑦 ) | |
| 4 | 3 | eqeq2i | ⊢ ( 𝑥 = ( 𝑦 +Q 𝑧 ) ↔ 𝑥 = ( 𝑧 +Q 𝑦 ) ) |
| 5 | 4 | 2rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑦 +Q 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 +Q 𝑦 ) ) |
| 6 | rexcom | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 +Q 𝑦 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑧 +Q 𝑦 ) ) | |
| 7 | 5 6 | bitri | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑦 +Q 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑧 +Q 𝑦 ) ) |
| 8 | 7 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑦 +Q 𝑧 ) } = { 𝑥 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑧 +Q 𝑦 ) } |
| 9 | 2 8 | eqtrdi | ⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐵 +P 𝐴 ) = { 𝑥 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑧 +Q 𝑦 ) } ) |
| 10 | 9 | ancoms | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐵 +P 𝐴 ) = { 𝑥 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑧 +Q 𝑦 ) } ) |
| 11 | 1 10 | eqtr4d | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 +P 𝐵 ) = ( 𝐵 +P 𝐴 ) ) |
| 12 | dmplp | ⊢ dom +P = ( P × P ) | |
| 13 | 12 | ndmovcom | ⊢ ( ¬ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 +P 𝐵 ) = ( 𝐵 +P 𝐴 ) ) |
| 14 | 11 13 | pm2.61i | ⊢ ( 𝐴 +P 𝐵 ) = ( 𝐵 +P 𝐴 ) |