This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of Gleason p. 124. (Contributed by NM, 2-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | distrpr | ⊢ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) = ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distrlem1pr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ⊆ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) | |
| 2 | distrlem5pr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ⊆ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) | |
| 3 | 1 2 | eqssd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) = ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) |
| 4 | dmplp | ⊢ dom +P = ( P × P ) | |
| 5 | 0npr | ⊢ ¬ ∅ ∈ P | |
| 6 | dmmp | ⊢ dom ·P = ( P × P ) | |
| 7 | 4 5 6 | ndmovdistr | ⊢ ( ¬ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) = ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) |
| 8 | 3 7 | pm2.61i | ⊢ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) = ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) |