This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addgt0sr | ⊢ ( ( 0R <R 𝐴 ∧ 0R <R 𝐵 ) → 0R <R ( 𝐴 +R 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelsr | ⊢ <R ⊆ ( R × R ) | |
| 2 | 1 | brel | ⊢ ( 0R <R 𝐴 → ( 0R ∈ R ∧ 𝐴 ∈ R ) ) |
| 3 | ltasr | ⊢ ( 𝐴 ∈ R → ( 0R <R 𝐵 ↔ ( 𝐴 +R 0R ) <R ( 𝐴 +R 𝐵 ) ) ) | |
| 4 | 0idsr | ⊢ ( 𝐴 ∈ R → ( 𝐴 +R 0R ) = 𝐴 ) | |
| 5 | 4 | breq1d | ⊢ ( 𝐴 ∈ R → ( ( 𝐴 +R 0R ) <R ( 𝐴 +R 𝐵 ) ↔ 𝐴 <R ( 𝐴 +R 𝐵 ) ) ) |
| 6 | 3 5 | bitrd | ⊢ ( 𝐴 ∈ R → ( 0R <R 𝐵 ↔ 𝐴 <R ( 𝐴 +R 𝐵 ) ) ) |
| 7 | 2 6 | simpl2im | ⊢ ( 0R <R 𝐴 → ( 0R <R 𝐵 ↔ 𝐴 <R ( 𝐴 +R 𝐵 ) ) ) |
| 8 | 7 | biimpa | ⊢ ( ( 0R <R 𝐴 ∧ 0R <R 𝐵 ) → 𝐴 <R ( 𝐴 +R 𝐵 ) ) |
| 9 | ltsosr | ⊢ <R Or R | |
| 10 | 9 1 | sotri | ⊢ ( ( 0R <R 𝐴 ∧ 𝐴 <R ( 𝐴 +R 𝐵 ) ) → 0R <R ( 𝐴 +R 𝐵 ) ) |
| 11 | 8 10 | syldan | ⊢ ( ( 0R <R 𝐴 ∧ 0R <R 𝐵 ) → 0R <R ( 𝐴 +R 𝐵 ) ) |