This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a direct relationship between transitive Tarski classes and inaccessible cardinals: the Tarski classes that occur in the cumulative hierarchy are exactly at the strongly inaccessible cardinals. (Contributed by Mario Carneiro, 8-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1tskina | ⊢ ( 𝐴 ∈ On → ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ↔ ( 𝐴 = ∅ ∨ 𝐴 ∈ Inacc ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | ⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) | |
| 2 | simplr | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) | |
| 3 | simpll | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On ) | |
| 4 | onwf | ⊢ On ⊆ ∪ ( 𝑅1 “ On ) | |
| 5 | 4 | sseli | ⊢ ( 𝐴 ∈ On → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 6 | eqid | ⊢ ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 ) | |
| 7 | rankr1c | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) ) ) | |
| 8 | 6 7 | mpbii | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) ) |
| 9 | 5 8 | syl | ⊢ ( 𝐴 ∈ On → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) ) |
| 10 | 9 | simpld | ⊢ ( 𝐴 ∈ On → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 11 | r1fnon | ⊢ 𝑅1 Fn On | |
| 12 | 11 | fndmi | ⊢ dom 𝑅1 = On |
| 13 | 12 | eleq2i | ⊢ ( 𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ On ) |
| 14 | rankonid | ⊢ ( 𝐴 ∈ dom 𝑅1 ↔ ( rank ‘ 𝐴 ) = 𝐴 ) | |
| 15 | 13 14 | bitr3i | ⊢ ( 𝐴 ∈ On ↔ ( rank ‘ 𝐴 ) = 𝐴 ) |
| 16 | fveq2 | ⊢ ( ( rank ‘ 𝐴 ) = 𝐴 → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) = ( 𝑅1 ‘ 𝐴 ) ) | |
| 17 | 15 16 | sylbi | ⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) = ( 𝑅1 ‘ 𝐴 ) ) |
| 18 | 10 17 | neleqtrd | ⊢ ( 𝐴 ∈ On → ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 19 | 18 | adantl | ⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ 𝐴 ∈ On ) → ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 20 | onssr1 | ⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) | |
| 21 | 13 20 | sylbir | ⊢ ( 𝐴 ∈ On → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 22 | tsken | ⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) → ( 𝐴 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝐴 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 23 | 21 22 | sylan2 | ⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ 𝐴 ∈ On ) → ( 𝐴 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝐴 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 24 | 23 | ord | ⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ 𝐴 ∈ On ) → ( ¬ 𝐴 ≈ ( 𝑅1 ‘ 𝐴 ) → 𝐴 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 25 | 19 24 | mt3d | ⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ 𝐴 ∈ On ) → 𝐴 ≈ ( 𝑅1 ‘ 𝐴 ) ) |
| 26 | 2 3 25 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≈ ( 𝑅1 ‘ 𝐴 ) ) |
| 27 | carden2b | ⊢ ( 𝐴 ≈ ( 𝑅1 ‘ 𝐴 ) → ( card ‘ 𝐴 ) = ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( card ‘ 𝐴 ) = ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 29 | simpl | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) → 𝐴 ∈ On ) | |
| 30 | simplr | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) | |
| 31 | 21 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 32 | 31 | sselda | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 33 | tsksdom | ⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ) | |
| 34 | 30 32 33 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ) |
| 35 | simpll | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ On ) | |
| 36 | 25 | ensymd | ⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ 𝐴 ∈ On ) → ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) |
| 37 | 30 35 36 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) |
| 38 | sdomentr | ⊢ ( ( 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ∧ ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) → 𝑥 ≺ 𝐴 ) | |
| 39 | 34 37 38 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≺ 𝐴 ) |
| 40 | 39 | ralrimiva | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) → ∀ 𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ) |
| 41 | iscard | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ) ) | |
| 42 | 29 40 41 | sylanbrc | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) → ( card ‘ 𝐴 ) = 𝐴 ) |
| 43 | 42 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( card ‘ 𝐴 ) = 𝐴 ) |
| 44 | 28 43 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 ) |
| 45 | r10 | ⊢ ( 𝑅1 ‘ ∅ ) = ∅ | |
| 46 | on0eln0 | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 47 | 46 | biimpar | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 ) |
| 48 | r1sdom | ⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝑅1 ‘ ∅ ) ≺ ( 𝑅1 ‘ 𝐴 ) ) | |
| 49 | 47 48 | syldan | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ( 𝑅1 ‘ ∅ ) ≺ ( 𝑅1 ‘ 𝐴 ) ) |
| 50 | 45 49 | eqbrtrrid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ≺ ( 𝑅1 ‘ 𝐴 ) ) |
| 51 | fvex | ⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V | |
| 52 | 51 | 0sdom | ⊢ ( ∅ ≺ ( 𝑅1 ‘ 𝐴 ) ↔ ( 𝑅1 ‘ 𝐴 ) ≠ ∅ ) |
| 53 | 50 52 | sylib | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ( 𝑅1 ‘ 𝐴 ) ≠ ∅ ) |
| 54 | 53 | adantlr | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( 𝑅1 ‘ 𝐴 ) ≠ ∅ ) |
| 55 | tskcard | ⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ ( 𝑅1 ‘ 𝐴 ) ≠ ∅ ) → ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) ∈ Inacc ) | |
| 56 | 2 54 55 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) ∈ Inacc ) |
| 57 | 44 56 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Inacc ) |
| 58 | 57 | ex | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) → ( 𝐴 ≠ ∅ → 𝐴 ∈ Inacc ) ) |
| 59 | 1 58 | biimtrrid | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) → ( ¬ 𝐴 = ∅ → 𝐴 ∈ Inacc ) ) |
| 60 | 59 | orrd | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) → ( 𝐴 = ∅ ∨ 𝐴 ∈ Inacc ) ) |
| 61 | 60 | ex | ⊢ ( 𝐴 ∈ On → ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski → ( 𝐴 = ∅ ∨ 𝐴 ∈ Inacc ) ) ) |
| 62 | fveq2 | ⊢ ( 𝐴 = ∅ → ( 𝑅1 ‘ 𝐴 ) = ( 𝑅1 ‘ ∅ ) ) | |
| 63 | 62 45 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
| 64 | 0tsk | ⊢ ∅ ∈ Tarski | |
| 65 | 63 64 | eqeltrdi | ⊢ ( 𝐴 = ∅ → ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) |
| 66 | inatsk | ⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) | |
| 67 | 65 66 | jaoi | ⊢ ( ( 𝐴 = ∅ ∨ 𝐴 ∈ Inacc ) → ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) |
| 68 | 61 67 | impbid1 | ⊢ ( 𝐴 ∈ On → ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ↔ ( 𝐴 = ∅ ∨ 𝐴 ∈ Inacc ) ) ) |