This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a direct relationship between transitive Tarski classes and inaccessible cardinals: the Tarski classes that occur in the cumulative hierarchy are exactly at the strongly inaccessible cardinals. (Contributed by Mario Carneiro, 8-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1tskina | |- ( A e. On -> ( ( R1 ` A ) e. Tarski <-> ( A = (/) \/ A e. Inacc ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | |- ( A =/= (/) <-> -. A = (/) ) |
|
| 2 | simplr | |- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( R1 ` A ) e. Tarski ) |
|
| 3 | simpll | |- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> A e. On ) |
|
| 4 | onwf | |- On C_ U. ( R1 " On ) |
|
| 5 | 4 | sseli | |- ( A e. On -> A e. U. ( R1 " On ) ) |
| 6 | eqid | |- ( rank ` A ) = ( rank ` A ) |
|
| 7 | rankr1c | |- ( A e. U. ( R1 " On ) -> ( ( rank ` A ) = ( rank ` A ) <-> ( -. A e. ( R1 ` ( rank ` A ) ) /\ A e. ( R1 ` suc ( rank ` A ) ) ) ) ) |
|
| 8 | 6 7 | mpbii | |- ( A e. U. ( R1 " On ) -> ( -. A e. ( R1 ` ( rank ` A ) ) /\ A e. ( R1 ` suc ( rank ` A ) ) ) ) |
| 9 | 5 8 | syl | |- ( A e. On -> ( -. A e. ( R1 ` ( rank ` A ) ) /\ A e. ( R1 ` suc ( rank ` A ) ) ) ) |
| 10 | 9 | simpld | |- ( A e. On -> -. A e. ( R1 ` ( rank ` A ) ) ) |
| 11 | r1fnon | |- R1 Fn On |
|
| 12 | 11 | fndmi | |- dom R1 = On |
| 13 | 12 | eleq2i | |- ( A e. dom R1 <-> A e. On ) |
| 14 | rankonid | |- ( A e. dom R1 <-> ( rank ` A ) = A ) |
|
| 15 | 13 14 | bitr3i | |- ( A e. On <-> ( rank ` A ) = A ) |
| 16 | fveq2 | |- ( ( rank ` A ) = A -> ( R1 ` ( rank ` A ) ) = ( R1 ` A ) ) |
|
| 17 | 15 16 | sylbi | |- ( A e. On -> ( R1 ` ( rank ` A ) ) = ( R1 ` A ) ) |
| 18 | 10 17 | neleqtrd | |- ( A e. On -> -. A e. ( R1 ` A ) ) |
| 19 | 18 | adantl | |- ( ( ( R1 ` A ) e. Tarski /\ A e. On ) -> -. A e. ( R1 ` A ) ) |
| 20 | onssr1 | |- ( A e. dom R1 -> A C_ ( R1 ` A ) ) |
|
| 21 | 13 20 | sylbir | |- ( A e. On -> A C_ ( R1 ` A ) ) |
| 22 | tsken | |- ( ( ( R1 ` A ) e. Tarski /\ A C_ ( R1 ` A ) ) -> ( A ~~ ( R1 ` A ) \/ A e. ( R1 ` A ) ) ) |
|
| 23 | 21 22 | sylan2 | |- ( ( ( R1 ` A ) e. Tarski /\ A e. On ) -> ( A ~~ ( R1 ` A ) \/ A e. ( R1 ` A ) ) ) |
| 24 | 23 | ord | |- ( ( ( R1 ` A ) e. Tarski /\ A e. On ) -> ( -. A ~~ ( R1 ` A ) -> A e. ( R1 ` A ) ) ) |
| 25 | 19 24 | mt3d | |- ( ( ( R1 ` A ) e. Tarski /\ A e. On ) -> A ~~ ( R1 ` A ) ) |
| 26 | 2 3 25 | syl2anc | |- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> A ~~ ( R1 ` A ) ) |
| 27 | carden2b | |- ( A ~~ ( R1 ` A ) -> ( card ` A ) = ( card ` ( R1 ` A ) ) ) |
|
| 28 | 26 27 | syl | |- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( card ` A ) = ( card ` ( R1 ` A ) ) ) |
| 29 | simpl | |- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> A e. On ) |
|
| 30 | simplr | |- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> ( R1 ` A ) e. Tarski ) |
|
| 31 | 21 | adantr | |- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> A C_ ( R1 ` A ) ) |
| 32 | 31 | sselda | |- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> x e. ( R1 ` A ) ) |
| 33 | tsksdom | |- ( ( ( R1 ` A ) e. Tarski /\ x e. ( R1 ` A ) ) -> x ~< ( R1 ` A ) ) |
|
| 34 | 30 32 33 | syl2anc | |- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> x ~< ( R1 ` A ) ) |
| 35 | simpll | |- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> A e. On ) |
|
| 36 | 25 | ensymd | |- ( ( ( R1 ` A ) e. Tarski /\ A e. On ) -> ( R1 ` A ) ~~ A ) |
| 37 | 30 35 36 | syl2anc | |- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> ( R1 ` A ) ~~ A ) |
| 38 | sdomentr | |- ( ( x ~< ( R1 ` A ) /\ ( R1 ` A ) ~~ A ) -> x ~< A ) |
|
| 39 | 34 37 38 | syl2anc | |- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> x ~< A ) |
| 40 | 39 | ralrimiva | |- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> A. x e. A x ~< A ) |
| 41 | iscard | |- ( ( card ` A ) = A <-> ( A e. On /\ A. x e. A x ~< A ) ) |
|
| 42 | 29 40 41 | sylanbrc | |- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> ( card ` A ) = A ) |
| 43 | 42 | adantr | |- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( card ` A ) = A ) |
| 44 | 28 43 | eqtr3d | |- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( card ` ( R1 ` A ) ) = A ) |
| 45 | r10 | |- ( R1 ` (/) ) = (/) |
|
| 46 | on0eln0 | |- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
|
| 47 | 46 | biimpar | |- ( ( A e. On /\ A =/= (/) ) -> (/) e. A ) |
| 48 | r1sdom | |- ( ( A e. On /\ (/) e. A ) -> ( R1 ` (/) ) ~< ( R1 ` A ) ) |
|
| 49 | 47 48 | syldan | |- ( ( A e. On /\ A =/= (/) ) -> ( R1 ` (/) ) ~< ( R1 ` A ) ) |
| 50 | 45 49 | eqbrtrrid | |- ( ( A e. On /\ A =/= (/) ) -> (/) ~< ( R1 ` A ) ) |
| 51 | fvex | |- ( R1 ` A ) e. _V |
|
| 52 | 51 | 0sdom | |- ( (/) ~< ( R1 ` A ) <-> ( R1 ` A ) =/= (/) ) |
| 53 | 50 52 | sylib | |- ( ( A e. On /\ A =/= (/) ) -> ( R1 ` A ) =/= (/) ) |
| 54 | 53 | adantlr | |- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( R1 ` A ) =/= (/) ) |
| 55 | tskcard | |- ( ( ( R1 ` A ) e. Tarski /\ ( R1 ` A ) =/= (/) ) -> ( card ` ( R1 ` A ) ) e. Inacc ) |
|
| 56 | 2 54 55 | syl2anc | |- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( card ` ( R1 ` A ) ) e. Inacc ) |
| 57 | 44 56 | eqeltrrd | |- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> A e. Inacc ) |
| 58 | 57 | ex | |- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> ( A =/= (/) -> A e. Inacc ) ) |
| 59 | 1 58 | biimtrrid | |- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> ( -. A = (/) -> A e. Inacc ) ) |
| 60 | 59 | orrd | |- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> ( A = (/) \/ A e. Inacc ) ) |
| 61 | 60 | ex | |- ( A e. On -> ( ( R1 ` A ) e. Tarski -> ( A = (/) \/ A e. Inacc ) ) ) |
| 62 | fveq2 | |- ( A = (/) -> ( R1 ` A ) = ( R1 ` (/) ) ) |
|
| 63 | 62 45 | eqtrdi | |- ( A = (/) -> ( R1 ` A ) = (/) ) |
| 64 | 0tsk | |- (/) e. Tarski |
|
| 65 | 63 64 | eqeltrdi | |- ( A = (/) -> ( R1 ` A ) e. Tarski ) |
| 66 | inatsk | |- ( A e. Inacc -> ( R1 ` A ) e. Tarski ) |
|
| 67 | 65 66 | jaoi | |- ( ( A = (/) \/ A e. Inacc ) -> ( R1 ` A ) e. Tarski ) |
| 68 | 61 67 | impbid1 | |- ( A e. On -> ( ( R1 ` A ) e. Tarski <-> ( A = (/) \/ A e. Inacc ) ) ) |