This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0tsk | ⊢ ∅ ∈ Tarski |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ( 𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅ ) | |
| 2 | elsni | ⊢ ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ ) | |
| 3 | 0ex | ⊢ ∅ ∈ V | |
| 4 | 3 | enref | ⊢ ∅ ≈ ∅ |
| 5 | breq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ≈ ∅ ↔ ∅ ≈ ∅ ) ) | |
| 6 | 4 5 | mpbiri | ⊢ ( 𝑥 = ∅ → 𝑥 ≈ ∅ ) |
| 7 | 6 | orcd | ⊢ ( 𝑥 = ∅ → ( 𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅ ) ) |
| 8 | 2 7 | syl | ⊢ ( 𝑥 ∈ { ∅ } → ( 𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅ ) ) |
| 9 | pw0 | ⊢ 𝒫 ∅ = { ∅ } | |
| 10 | 8 9 | eleq2s | ⊢ ( 𝑥 ∈ 𝒫 ∅ → ( 𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅ ) ) |
| 11 | 10 | rgen | ⊢ ∀ 𝑥 ∈ 𝒫 ∅ ( 𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅ ) |
| 12 | eltsk2g | ⊢ ( ∅ ∈ V → ( ∅ ∈ Tarski ↔ ( ∀ 𝑥 ∈ ∅ ( 𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅ ) ∧ ∀ 𝑥 ∈ 𝒫 ∅ ( 𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅ ) ) ) ) | |
| 13 | 3 12 | ax-mp | ⊢ ( ∅ ∈ Tarski ↔ ( ∀ 𝑥 ∈ ∅ ( 𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅ ) ∧ ∀ 𝑥 ∈ 𝒫 ∅ ( 𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅ ) ) ) |
| 14 | 1 11 13 | mpbir2an | ⊢ ∅ ∈ Tarski |