This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each stage in the cumulative hierarchy is strictly larger than the last. (Contributed by Mario Carneiro, 19-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1sdom | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝑥 = ∅ → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ ∅ ) ) | |
| 2 | fveq2 | ⊢ ( 𝑥 = ∅ → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ ∅ ) ) | |
| 3 | 2 | breq2d | ⊢ ( 𝑥 = ∅ → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ ∅ ) ) ) |
| 4 | 1 3 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐵 ∈ 𝑥 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝐵 ∈ ∅ → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ ∅ ) ) ) ) |
| 5 | eleq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ 𝑦 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) | |
| 7 | 6 | breq2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 8 | 5 7 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ∈ 𝑥 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 9 | eleq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ suc 𝑦 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) ) | |
| 11 | 10 | breq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 12 | 9 11 | imbi12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐵 ∈ 𝑥 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝐵 ∈ suc 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
| 13 | eleq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ 𝐴 ) ) | |
| 14 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝐴 ) ) | |
| 15 | 14 | breq2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 16 | 13 15 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ 𝑥 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝐵 ∈ 𝐴 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
| 17 | noel | ⊢ ¬ 𝐵 ∈ ∅ | |
| 18 | 17 | pm2.21i | ⊢ ( 𝐵 ∈ ∅ → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ ∅ ) ) |
| 19 | elsuci | ⊢ ( 𝐵 ∈ suc 𝑦 → ( 𝐵 ∈ 𝑦 ∨ 𝐵 = 𝑦 ) ) | |
| 20 | sdomtr | ⊢ ( ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ∧ ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) | |
| 21 | 20 | expcom | ⊢ ( ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 22 | fvex | ⊢ ( 𝑅1 ‘ 𝑦 ) ∈ V | |
| 23 | 22 | canth2 | ⊢ ( 𝑅1 ‘ 𝑦 ) ≺ 𝒫 ( 𝑅1 ‘ 𝑦 ) |
| 24 | r1suc | ⊢ ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) | |
| 25 | 23 24 | breqtrrid | ⊢ ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) |
| 26 | 21 25 | syl11 | ⊢ ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 27 | 26 | imim2i | ⊢ ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 ∈ 𝑦 → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
| 28 | fveq2 | ⊢ ( 𝐵 = 𝑦 → ( 𝑅1 ‘ 𝐵 ) = ( 𝑅1 ‘ 𝑦 ) ) | |
| 29 | 28 | breq1d | ⊢ ( 𝐵 = 𝑦 → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ↔ ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 30 | 25 29 | imbitrrid | ⊢ ( 𝐵 = 𝑦 → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 31 | 30 | a1i | ⊢ ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 = 𝑦 → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
| 32 | 27 31 | jaod | ⊢ ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( ( 𝐵 ∈ 𝑦 ∨ 𝐵 = 𝑦 ) → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
| 33 | 19 32 | syl5 | ⊢ ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 ∈ suc 𝑦 → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
| 34 | 33 | com3r | ⊢ ( 𝑦 ∈ On → ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 ∈ suc 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
| 35 | limuni | ⊢ ( Lim 𝑥 → 𝑥 = ∪ 𝑥 ) | |
| 36 | 35 | eleq2d | ⊢ ( Lim 𝑥 → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ ∪ 𝑥 ) ) |
| 37 | eluni2 | ⊢ ( 𝐵 ∈ ∪ 𝑥 ↔ ∃ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 ) | |
| 38 | 36 37 | bitrdi | ⊢ ( Lim 𝑥 → ( 𝐵 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 ) ) |
| 39 | r19.29 | ⊢ ( ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 ) → ∃ 𝑦 ∈ 𝑥 ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝐵 ∈ 𝑦 ) ) | |
| 40 | fvex | ⊢ ( 𝑅1 ‘ 𝑥 ) ∈ V | |
| 41 | ssiun2 | ⊢ ( 𝑦 ∈ 𝑥 → ( 𝑅1 ‘ 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) | |
| 42 | vex | ⊢ 𝑥 ∈ V | |
| 43 | r1lim | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) | |
| 44 | 42 43 | mpan | ⊢ ( Lim 𝑥 → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) |
| 45 | 44 | sseq2d | ⊢ ( Lim 𝑥 → ( ( 𝑅1 ‘ 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) ) |
| 46 | 41 45 | imbitrrid | ⊢ ( Lim 𝑥 → ( 𝑦 ∈ 𝑥 → ( 𝑅1 ‘ 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 47 | ssdomg | ⊢ ( ( 𝑅1 ‘ 𝑥 ) ∈ V → ( ( 𝑅1 ‘ 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) → ( 𝑅1 ‘ 𝑦 ) ≼ ( 𝑅1 ‘ 𝑥 ) ) ) | |
| 48 | 40 46 47 | mpsylsyld | ⊢ ( Lim 𝑥 → ( 𝑦 ∈ 𝑥 → ( 𝑅1 ‘ 𝑦 ) ≼ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 49 | id | ⊢ ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 50 | 49 | imp | ⊢ ( ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝐵 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) |
| 51 | sdomdomtr | ⊢ ( ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ∧ ( 𝑅1 ‘ 𝑦 ) ≼ ( 𝑅1 ‘ 𝑥 ) ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) | |
| 52 | 51 | expcom | ⊢ ( ( 𝑅1 ‘ 𝑦 ) ≼ ( 𝑅1 ‘ 𝑥 ) → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 53 | 50 52 | syl5 | ⊢ ( ( 𝑅1 ‘ 𝑦 ) ≼ ( 𝑅1 ‘ 𝑥 ) → ( ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝐵 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 54 | 48 53 | syl6 | ⊢ ( Lim 𝑥 → ( 𝑦 ∈ 𝑥 → ( ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝐵 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) ) |
| 55 | 54 | rexlimdv | ⊢ ( Lim 𝑥 → ( ∃ 𝑦 ∈ 𝑥 ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝐵 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 56 | 39 55 | syl5 | ⊢ ( Lim 𝑥 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 57 | 56 | expcomd | ⊢ ( Lim 𝑥 → ( ∃ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) ) |
| 58 | 38 57 | sylbid | ⊢ ( Lim 𝑥 → ( 𝐵 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) ) |
| 59 | 58 | com23 | ⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 ∈ 𝑥 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) ) |
| 60 | 4 8 12 16 18 34 59 | tfinds | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ 𝐴 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 61 | 60 | imp | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝐴 ) ) |