This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . Proposition 9.15(2) of TakeutiZaring p. 79. (Contributed by Mario Carneiro, 22-Mar-2013) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankr1c | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐵 = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐵 = ( rank ‘ 𝐴 ) → 𝐵 = ( rank ‘ 𝐴 ) ) | |
| 2 | rankdmr1 | ⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 | |
| 3 | 1 2 | eqeltrdi | ⊢ ( 𝐵 = ( rank ‘ 𝐴 ) → 𝐵 ∈ dom 𝑅1 ) |
| 4 | 3 | a1i | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐵 = ( rank ‘ 𝐴 ) → 𝐵 ∈ dom 𝑅1 ) ) |
| 5 | elfvdm | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) → suc 𝐵 ∈ dom 𝑅1 ) | |
| 6 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 7 | 6 | simpri | ⊢ Lim dom 𝑅1 |
| 8 | limsuc | ⊢ ( Lim dom 𝑅1 → ( 𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1 ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( 𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1 ) |
| 10 | 5 9 | sylibr | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) → 𝐵 ∈ dom 𝑅1 ) |
| 11 | 10 | adantl | ⊢ ( ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) → 𝐵 ∈ dom 𝑅1 ) |
| 12 | 11 | a1i | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) → 𝐵 ∈ dom 𝑅1 ) ) |
| 13 | eqss | ⊢ ( 𝐵 = ( rank ‘ 𝐴 ) ↔ ( 𝐵 ⊆ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) ) | |
| 14 | rankr1clem | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝐵 ⊆ ( rank ‘ 𝐴 ) ) ) | |
| 15 | rankr1ag | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ suc 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) | |
| 16 | 9 15 | sylan2b | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
| 17 | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On | |
| 18 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 19 | 7 18 | ax-mp | ⊢ Ord dom 𝑅1 |
| 20 | ordelon | ⊢ ( ( Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1 ) → 𝐵 ∈ On ) | |
| 21 | 19 20 | mpan | ⊢ ( 𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On ) |
| 22 | 21 | adantl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → 𝐵 ∈ On ) |
| 23 | onsssuc | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) | |
| 24 | 17 22 23 | sylancr | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
| 25 | 16 24 | bitr4d | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) ) |
| 26 | 14 25 | anbi12d | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ↔ ( 𝐵 ⊆ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) ) ) |
| 27 | 13 26 | bitr4id | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐵 = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) |
| 28 | 27 | ex | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐵 ∈ dom 𝑅1 → ( 𝐵 = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) ) |
| 29 | 4 12 28 | pm5.21ndd | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐵 = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) |