This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1pwss | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 2 | 1 | simpri | ⊢ Lim dom 𝑅1 |
| 3 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 4 | 2 3 | ax-mp | ⊢ Ord dom 𝑅1 |
| 5 | ordsson | ⊢ ( Ord dom 𝑅1 → dom 𝑅1 ⊆ On ) | |
| 6 | 4 5 | ax-mp | ⊢ dom 𝑅1 ⊆ On |
| 7 | elfvdm | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ dom 𝑅1 ) | |
| 8 | 6 7 | sselid | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ On ) |
| 9 | onzsl | ⊢ ( 𝐵 ∈ On ↔ ( 𝐵 = ∅ ∨ ∃ 𝑥 ∈ On 𝐵 = suc 𝑥 ∨ ( 𝐵 ∈ V ∧ Lim 𝐵 ) ) ) | |
| 10 | 8 9 | sylib | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐵 = ∅ ∨ ∃ 𝑥 ∈ On 𝐵 = suc 𝑥 ∨ ( 𝐵 ∈ V ∧ Lim 𝐵 ) ) ) |
| 11 | noel | ⊢ ¬ 𝐴 ∈ ∅ | |
| 12 | fveq2 | ⊢ ( 𝐵 = ∅ → ( 𝑅1 ‘ 𝐵 ) = ( 𝑅1 ‘ ∅ ) ) | |
| 13 | r10 | ⊢ ( 𝑅1 ‘ ∅ ) = ∅ | |
| 14 | 12 13 | eqtrdi | ⊢ ( 𝐵 = ∅ → ( 𝑅1 ‘ 𝐵 ) = ∅ ) |
| 15 | 14 | eleq2d | ⊢ ( 𝐵 = ∅ → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝐴 ∈ ∅ ) ) |
| 16 | 15 | biimpcd | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐵 = ∅ → 𝐴 ∈ ∅ ) ) |
| 17 | 11 16 | mtoi | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ¬ 𝐵 = ∅ ) |
| 18 | 17 | pm2.21d | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐵 = ∅ → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 19 | simpl | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) | |
| 20 | simpr | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝐵 = suc 𝑥 ) | |
| 21 | 20 | fveq2d | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → ( 𝑅1 ‘ 𝐵 ) = ( 𝑅1 ‘ suc 𝑥 ) ) |
| 22 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝐵 ∈ dom 𝑅1 ) |
| 23 | 20 22 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → suc 𝑥 ∈ dom 𝑅1 ) |
| 24 | limsuc | ⊢ ( Lim dom 𝑅1 → ( 𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1 ) ) | |
| 25 | 2 24 | ax-mp | ⊢ ( 𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1 ) |
| 26 | 23 25 | sylibr | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝑥 ∈ dom 𝑅1 ) |
| 27 | r1sucg | ⊢ ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 29 | 21 28 | eqtrd | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → ( 𝑅1 ‘ 𝐵 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 30 | 19 29 | eleqtrd | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 31 | elpwi | ⊢ ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) | |
| 32 | sspw | ⊢ ( 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) → 𝒫 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) | |
| 33 | 30 31 32 | 3syl | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝒫 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 34 | 33 29 | sseqtrrd | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) |
| 35 | 34 | ex | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 36 | 35 | rexlimdvw | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( ∃ 𝑥 ∈ On 𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 37 | r1tr | ⊢ Tr ( 𝑅1 ‘ 𝐵 ) | |
| 38 | simpl | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) | |
| 39 | r1limg | ⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵 ) → ( 𝑅1 ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝑅1 ‘ 𝑥 ) ) | |
| 40 | 7 39 | sylan | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → ( 𝑅1 ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝑅1 ‘ 𝑥 ) ) |
| 41 | 38 40 | eleqtrd | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝑅1 ‘ 𝑥 ) ) |
| 42 | eliun | ⊢ ( 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) | |
| 43 | 41 42 | sylib | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → ∃ 𝑥 ∈ 𝐵 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 44 | simprl | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝑥 ∈ 𝐵 ) | |
| 45 | limsuc | ⊢ ( Lim 𝐵 → ( 𝑥 ∈ 𝐵 ↔ suc 𝑥 ∈ 𝐵 ) ) | |
| 46 | 45 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → ( 𝑥 ∈ 𝐵 ↔ suc 𝑥 ∈ 𝐵 ) ) |
| 47 | 44 46 | mpbid | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → suc 𝑥 ∈ 𝐵 ) |
| 48 | limsuc | ⊢ ( Lim 𝐵 → ( suc 𝑥 ∈ 𝐵 ↔ suc suc 𝑥 ∈ 𝐵 ) ) | |
| 49 | 48 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → ( suc 𝑥 ∈ 𝐵 ↔ suc suc 𝑥 ∈ 𝐵 ) ) |
| 50 | 47 49 | mpbid | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → suc suc 𝑥 ∈ 𝐵 ) |
| 51 | r1tr | ⊢ Tr ( 𝑅1 ‘ 𝑥 ) | |
| 52 | simprr | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) | |
| 53 | trss | ⊢ ( Tr ( 𝑅1 ‘ 𝑥 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) | |
| 54 | 51 52 53 | mpsyl | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 55 | 54 32 | syl | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝒫 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 56 | 7 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝐵 ∈ dom 𝑅1 ) |
| 57 | ordtr1 | ⊢ ( Ord dom 𝑅1 → ( ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) ) | |
| 58 | 4 57 | ax-mp | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) |
| 59 | 44 56 58 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom 𝑅1 ) |
| 60 | 59 27 | syl | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 61 | 55 60 | sseqtrrd | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ suc 𝑥 ) ) |
| 62 | fvex | ⊢ ( 𝑅1 ‘ suc 𝑥 ) ∈ V | |
| 63 | 62 | elpw2 | ⊢ ( 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝒫 𝐴 ⊆ ( 𝑅1 ‘ suc 𝑥 ) ) |
| 64 | 61 63 | sylibr | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc 𝑥 ) ) |
| 65 | 59 25 | sylib | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → suc 𝑥 ∈ dom 𝑅1 ) |
| 66 | r1sucg | ⊢ ( suc 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ suc 𝑥 ) ) | |
| 67 | 65 66 | syl | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → ( 𝑅1 ‘ suc suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ suc 𝑥 ) ) |
| 68 | 64 67 | eleqtrrd | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc 𝑥 ) ) |
| 69 | fveq2 | ⊢ ( 𝑦 = suc suc 𝑥 → ( 𝑅1 ‘ 𝑦 ) = ( 𝑅1 ‘ suc suc 𝑥 ) ) | |
| 70 | 69 | eleq2d | ⊢ ( 𝑦 = suc suc 𝑥 → ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc 𝑥 ) ) ) |
| 71 | 70 | rspcev | ⊢ ( ( suc suc 𝑥 ∈ 𝐵 ∧ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc 𝑥 ) ) → ∃ 𝑦 ∈ 𝐵 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 72 | 50 68 71 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → ∃ 𝑦 ∈ 𝐵 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 73 | 43 72 | rexlimddv | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → ∃ 𝑦 ∈ 𝐵 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 74 | eliun | ⊢ ( 𝒫 𝐴 ∈ ∪ 𝑦 ∈ 𝐵 ( 𝑅1 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐵 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) | |
| 75 | 73 74 | sylibr | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → 𝒫 𝐴 ∈ ∪ 𝑦 ∈ 𝐵 ( 𝑅1 ‘ 𝑦 ) ) |
| 76 | r1limg | ⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵 ) → ( 𝑅1 ‘ 𝐵 ) = ∪ 𝑦 ∈ 𝐵 ( 𝑅1 ‘ 𝑦 ) ) | |
| 77 | 7 76 | sylan | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → ( 𝑅1 ‘ 𝐵 ) = ∪ 𝑦 ∈ 𝐵 ( 𝑅1 ‘ 𝑦 ) ) |
| 78 | 75 77 | eleqtrrd | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) |
| 79 | trss | ⊢ ( Tr ( 𝑅1 ‘ 𝐵 ) → ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) | |
| 80 | 37 78 79 | mpsyl | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) |
| 81 | 80 | ex | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( Lim 𝐵 → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 82 | 81 | adantld | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( ( 𝐵 ∈ V ∧ Lim 𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 83 | 18 36 82 | 3jaod | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( ( 𝐵 = ∅ ∨ ∃ 𝑥 ∈ On 𝐵 = suc 𝑥 ∨ ( 𝐵 ∈ V ∧ Lim 𝐵 ) ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 84 | 10 83 | mpd | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) |