This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1pwss | |- ( A e. ( R1 ` B ) -> ~P A C_ ( R1 ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 2 | 1 | simpri | |- Lim dom R1 |
| 3 | limord | |- ( Lim dom R1 -> Ord dom R1 ) |
|
| 4 | 2 3 | ax-mp | |- Ord dom R1 |
| 5 | ordsson | |- ( Ord dom R1 -> dom R1 C_ On ) |
|
| 6 | 4 5 | ax-mp | |- dom R1 C_ On |
| 7 | elfvdm | |- ( A e. ( R1 ` B ) -> B e. dom R1 ) |
|
| 8 | 6 7 | sselid | |- ( A e. ( R1 ` B ) -> B e. On ) |
| 9 | onzsl | |- ( B e. On <-> ( B = (/) \/ E. x e. On B = suc x \/ ( B e. _V /\ Lim B ) ) ) |
|
| 10 | 8 9 | sylib | |- ( A e. ( R1 ` B ) -> ( B = (/) \/ E. x e. On B = suc x \/ ( B e. _V /\ Lim B ) ) ) |
| 11 | noel | |- -. A e. (/) |
|
| 12 | fveq2 | |- ( B = (/) -> ( R1 ` B ) = ( R1 ` (/) ) ) |
|
| 13 | r10 | |- ( R1 ` (/) ) = (/) |
|
| 14 | 12 13 | eqtrdi | |- ( B = (/) -> ( R1 ` B ) = (/) ) |
| 15 | 14 | eleq2d | |- ( B = (/) -> ( A e. ( R1 ` B ) <-> A e. (/) ) ) |
| 16 | 15 | biimpcd | |- ( A e. ( R1 ` B ) -> ( B = (/) -> A e. (/) ) ) |
| 17 | 11 16 | mtoi | |- ( A e. ( R1 ` B ) -> -. B = (/) ) |
| 18 | 17 | pm2.21d | |- ( A e. ( R1 ` B ) -> ( B = (/) -> ~P A C_ ( R1 ` B ) ) ) |
| 19 | simpl | |- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> A e. ( R1 ` B ) ) |
|
| 20 | simpr | |- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> B = suc x ) |
|
| 21 | 20 | fveq2d | |- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> ( R1 ` B ) = ( R1 ` suc x ) ) |
| 22 | 7 | adantr | |- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> B e. dom R1 ) |
| 23 | 20 22 | eqeltrrd | |- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> suc x e. dom R1 ) |
| 24 | limsuc | |- ( Lim dom R1 -> ( x e. dom R1 <-> suc x e. dom R1 ) ) |
|
| 25 | 2 24 | ax-mp | |- ( x e. dom R1 <-> suc x e. dom R1 ) |
| 26 | 23 25 | sylibr | |- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> x e. dom R1 ) |
| 27 | r1sucg | |- ( x e. dom R1 -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
|
| 28 | 26 27 | syl | |- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
| 29 | 21 28 | eqtrd | |- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> ( R1 ` B ) = ~P ( R1 ` x ) ) |
| 30 | 19 29 | eleqtrd | |- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> A e. ~P ( R1 ` x ) ) |
| 31 | elpwi | |- ( A e. ~P ( R1 ` x ) -> A C_ ( R1 ` x ) ) |
|
| 32 | sspw | |- ( A C_ ( R1 ` x ) -> ~P A C_ ~P ( R1 ` x ) ) |
|
| 33 | 30 31 32 | 3syl | |- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> ~P A C_ ~P ( R1 ` x ) ) |
| 34 | 33 29 | sseqtrrd | |- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> ~P A C_ ( R1 ` B ) ) |
| 35 | 34 | ex | |- ( A e. ( R1 ` B ) -> ( B = suc x -> ~P A C_ ( R1 ` B ) ) ) |
| 36 | 35 | rexlimdvw | |- ( A e. ( R1 ` B ) -> ( E. x e. On B = suc x -> ~P A C_ ( R1 ` B ) ) ) |
| 37 | r1tr | |- Tr ( R1 ` B ) |
|
| 38 | simpl | |- ( ( A e. ( R1 ` B ) /\ Lim B ) -> A e. ( R1 ` B ) ) |
|
| 39 | r1limg | |- ( ( B e. dom R1 /\ Lim B ) -> ( R1 ` B ) = U_ x e. B ( R1 ` x ) ) |
|
| 40 | 7 39 | sylan | |- ( ( A e. ( R1 ` B ) /\ Lim B ) -> ( R1 ` B ) = U_ x e. B ( R1 ` x ) ) |
| 41 | 38 40 | eleqtrd | |- ( ( A e. ( R1 ` B ) /\ Lim B ) -> A e. U_ x e. B ( R1 ` x ) ) |
| 42 | eliun | |- ( A e. U_ x e. B ( R1 ` x ) <-> E. x e. B A e. ( R1 ` x ) ) |
|
| 43 | 41 42 | sylib | |- ( ( A e. ( R1 ` B ) /\ Lim B ) -> E. x e. B A e. ( R1 ` x ) ) |
| 44 | simprl | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> x e. B ) |
|
| 45 | limsuc | |- ( Lim B -> ( x e. B <-> suc x e. B ) ) |
|
| 46 | 45 | ad2antlr | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ( x e. B <-> suc x e. B ) ) |
| 47 | 44 46 | mpbid | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> suc x e. B ) |
| 48 | limsuc | |- ( Lim B -> ( suc x e. B <-> suc suc x e. B ) ) |
|
| 49 | 48 | ad2antlr | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ( suc x e. B <-> suc suc x e. B ) ) |
| 50 | 47 49 | mpbid | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> suc suc x e. B ) |
| 51 | r1tr | |- Tr ( R1 ` x ) |
|
| 52 | simprr | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> A e. ( R1 ` x ) ) |
|
| 53 | trss | |- ( Tr ( R1 ` x ) -> ( A e. ( R1 ` x ) -> A C_ ( R1 ` x ) ) ) |
|
| 54 | 51 52 53 | mpsyl | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> A C_ ( R1 ` x ) ) |
| 55 | 54 32 | syl | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ~P A C_ ~P ( R1 ` x ) ) |
| 56 | 7 | ad2antrr | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> B e. dom R1 ) |
| 57 | ordtr1 | |- ( Ord dom R1 -> ( ( x e. B /\ B e. dom R1 ) -> x e. dom R1 ) ) |
|
| 58 | 4 57 | ax-mp | |- ( ( x e. B /\ B e. dom R1 ) -> x e. dom R1 ) |
| 59 | 44 56 58 | syl2anc | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> x e. dom R1 ) |
| 60 | 59 27 | syl | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
| 61 | 55 60 | sseqtrrd | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ~P A C_ ( R1 ` suc x ) ) |
| 62 | fvex | |- ( R1 ` suc x ) e. _V |
|
| 63 | 62 | elpw2 | |- ( ~P A e. ~P ( R1 ` suc x ) <-> ~P A C_ ( R1 ` suc x ) ) |
| 64 | 61 63 | sylibr | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ~P A e. ~P ( R1 ` suc x ) ) |
| 65 | 59 25 | sylib | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> suc x e. dom R1 ) |
| 66 | r1sucg | |- ( suc x e. dom R1 -> ( R1 ` suc suc x ) = ~P ( R1 ` suc x ) ) |
|
| 67 | 65 66 | syl | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ( R1 ` suc suc x ) = ~P ( R1 ` suc x ) ) |
| 68 | 64 67 | eleqtrrd | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ~P A e. ( R1 ` suc suc x ) ) |
| 69 | fveq2 | |- ( y = suc suc x -> ( R1 ` y ) = ( R1 ` suc suc x ) ) |
|
| 70 | 69 | eleq2d | |- ( y = suc suc x -> ( ~P A e. ( R1 ` y ) <-> ~P A e. ( R1 ` suc suc x ) ) ) |
| 71 | 70 | rspcev | |- ( ( suc suc x e. B /\ ~P A e. ( R1 ` suc suc x ) ) -> E. y e. B ~P A e. ( R1 ` y ) ) |
| 72 | 50 68 71 | syl2anc | |- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> E. y e. B ~P A e. ( R1 ` y ) ) |
| 73 | 43 72 | rexlimddv | |- ( ( A e. ( R1 ` B ) /\ Lim B ) -> E. y e. B ~P A e. ( R1 ` y ) ) |
| 74 | eliun | |- ( ~P A e. U_ y e. B ( R1 ` y ) <-> E. y e. B ~P A e. ( R1 ` y ) ) |
|
| 75 | 73 74 | sylibr | |- ( ( A e. ( R1 ` B ) /\ Lim B ) -> ~P A e. U_ y e. B ( R1 ` y ) ) |
| 76 | r1limg | |- ( ( B e. dom R1 /\ Lim B ) -> ( R1 ` B ) = U_ y e. B ( R1 ` y ) ) |
|
| 77 | 7 76 | sylan | |- ( ( A e. ( R1 ` B ) /\ Lim B ) -> ( R1 ` B ) = U_ y e. B ( R1 ` y ) ) |
| 78 | 75 77 | eleqtrrd | |- ( ( A e. ( R1 ` B ) /\ Lim B ) -> ~P A e. ( R1 ` B ) ) |
| 79 | trss | |- ( Tr ( R1 ` B ) -> ( ~P A e. ( R1 ` B ) -> ~P A C_ ( R1 ` B ) ) ) |
|
| 80 | 37 78 79 | mpsyl | |- ( ( A e. ( R1 ` B ) /\ Lim B ) -> ~P A C_ ( R1 ` B ) ) |
| 81 | 80 | ex | |- ( A e. ( R1 ` B ) -> ( Lim B -> ~P A C_ ( R1 ` B ) ) ) |
| 82 | 81 | adantld | |- ( A e. ( R1 ` B ) -> ( ( B e. _V /\ Lim B ) -> ~P A C_ ( R1 ` B ) ) ) |
| 83 | 18 36 82 | 3jaod | |- ( A e. ( R1 ` B ) -> ( ( B = (/) \/ E. x e. On B = suc x \/ ( B e. _V /\ Lim B ) ) -> ~P A C_ ( R1 ` B ) ) ) |
| 84 | 10 83 | mpd | |- ( A e. ( R1 ` B ) -> ~P A C_ ( R1 ` B ) ) |