This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If S is a two-sided ideal in R , then the "natural map" from elements to their cosets is a ring homomorphism from R to R / S . (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusring.u | ⊢ 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) | |
| qusring.i | ⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) | ||
| qusrhm.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | ||
| qusrhm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] ( 𝑅 ~QG 𝑆 ) ) | ||
| Assertion | qusrhm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusring.u | ⊢ 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) | |
| 2 | qusring.i | ⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) | |
| 3 | qusrhm.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| 4 | qusrhm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] ( 𝑅 ~QG 𝑆 ) ) | |
| 5 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( 1r ‘ 𝑈 ) = ( 1r ‘ 𝑈 ) | |
| 7 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) | |
| 9 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑅 ∈ Ring ) | |
| 10 | 1 2 | qusring | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑈 ∈ Ring ) |
| 11 | eqid | ⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 13 | eqid | ⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) | |
| 14 | 11 12 13 2 | 2idlval | ⊢ 𝐼 = ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 15 | 14 | elin2 | ⊢ ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 16 | 15 | simplbi | ⊢ ( 𝑆 ∈ 𝐼 → 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 17 | 11 | lidlsubg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 18 | 16 17 | sylan2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 19 | eqid | ⊢ ( 𝑅 ~QG 𝑆 ) = ( 𝑅 ~QG 𝑆 ) | |
| 20 | 3 19 | eqger | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝑆 ) Er 𝑋 ) |
| 21 | 18 20 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( 𝑅 ~QG 𝑆 ) Er 𝑋 ) |
| 22 | 3 | fvexi | ⊢ 𝑋 ∈ V |
| 23 | 22 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑋 ∈ V ) |
| 24 | 21 23 4 | divsfval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑆 ) ) |
| 25 | 1 2 5 | qus1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( 𝑈 ∈ Ring ∧ [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑆 ) = ( 1r ‘ 𝑈 ) ) ) |
| 26 | 25 | simprd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑆 ) = ( 1r ‘ 𝑈 ) ) |
| 27 | 24 26 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑈 ) ) |
| 28 | 1 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) ) |
| 29 | 3 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑋 = ( Base ‘ 𝑅 ) ) |
| 30 | 3 19 2 7 | 2idlcpbl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( ( 𝑎 ( 𝑅 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝑅 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( 𝑅 ~QG 𝑆 ) ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ) ) |
| 31 | 3 7 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) |
| 32 | 31 | 3expb | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) |
| 33 | 32 | adantlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) |
| 34 | 33 | caovclg | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) → ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ∈ 𝑋 ) |
| 35 | 28 29 21 9 30 34 7 8 | qusmulval | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( [ 𝑦 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑧 ] ( 𝑅 ~QG 𝑆 ) ) = [ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ] ( 𝑅 ~QG 𝑆 ) ) |
| 36 | 35 | 3expb | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( [ 𝑦 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑧 ] ( 𝑅 ~QG 𝑆 ) ) = [ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ] ( 𝑅 ~QG 𝑆 ) ) |
| 37 | 21 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑅 ~QG 𝑆 ) Er 𝑋 ) |
| 38 | 22 | a1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑋 ∈ V ) |
| 39 | 37 38 4 | divsfval | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) = [ 𝑦 ] ( 𝑅 ~QG 𝑆 ) ) |
| 40 | 37 38 4 | divsfval | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) = [ 𝑧 ] ( 𝑅 ~QG 𝑆 ) ) |
| 41 | 39 40 | oveq12d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( [ 𝑦 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑧 ] ( 𝑅 ~QG 𝑆 ) ) ) |
| 42 | 37 38 4 | divsfval | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = [ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ] ( 𝑅 ~QG 𝑆 ) ) |
| 43 | 36 41 42 | 3eqtr4rd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 44 | ringabl | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Abel ) | |
| 45 | 44 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑅 ∈ Abel ) |
| 46 | ablnsg | ⊢ ( 𝑅 ∈ Abel → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) ) | |
| 47 | 45 46 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) ) |
| 48 | 18 47 | eleqtrrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| 49 | 3 1 4 | qusghm | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑈 ) ) |
| 50 | 48 49 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑈 ) ) |
| 51 | 3 5 6 7 8 9 10 27 43 50 | isrhm2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑈 ) ) |