This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2idlval.i | ⊢ 𝐼 = ( LIdeal ‘ 𝑅 ) | |
| 2idlval.o | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | ||
| 2idlval.j | ⊢ 𝐽 = ( LIdeal ‘ 𝑂 ) | ||
| 2idlval.t | ⊢ 𝑇 = ( 2Ideal ‘ 𝑅 ) | ||
| Assertion | 2idlval | ⊢ 𝑇 = ( 𝐼 ∩ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlval.i | ⊢ 𝐼 = ( LIdeal ‘ 𝑅 ) | |
| 2 | 2idlval.o | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| 3 | 2idlval.j | ⊢ 𝐽 = ( LIdeal ‘ 𝑂 ) | |
| 4 | 2idlval.t | ⊢ 𝑇 = ( 2Ideal ‘ 𝑅 ) | |
| 5 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ 𝑟 ) = ( LIdeal ‘ 𝑅 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ 𝑟 ) = 𝐼 ) |
| 7 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( oppr ‘ 𝑟 ) = ( oppr ‘ 𝑅 ) ) | |
| 8 | 7 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( oppr ‘ 𝑟 ) = 𝑂 ) |
| 9 | 8 | fveq2d | ⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ ( oppr ‘ 𝑟 ) ) = ( LIdeal ‘ 𝑂 ) ) |
| 10 | 9 3 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ ( oppr ‘ 𝑟 ) ) = 𝐽 ) |
| 11 | 6 10 | ineq12d | ⊢ ( 𝑟 = 𝑅 → ( ( LIdeal ‘ 𝑟 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑟 ) ) ) = ( 𝐼 ∩ 𝐽 ) ) |
| 12 | df-2idl | ⊢ 2Ideal = ( 𝑟 ∈ V ↦ ( ( LIdeal ‘ 𝑟 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑟 ) ) ) ) | |
| 13 | 1 | fvexi | ⊢ 𝐼 ∈ V |
| 14 | 13 | inex1 | ⊢ ( 𝐼 ∩ 𝐽 ) ∈ V |
| 15 | 11 12 14 | fvmpt | ⊢ ( 𝑅 ∈ V → ( 2Ideal ‘ 𝑅 ) = ( 𝐼 ∩ 𝐽 ) ) |
| 16 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( 2Ideal ‘ 𝑅 ) = ∅ ) | |
| 17 | inss1 | ⊢ ( 𝐼 ∩ 𝐽 ) ⊆ 𝐼 | |
| 18 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( LIdeal ‘ 𝑅 ) = ∅ ) | |
| 19 | 1 18 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → 𝐼 = ∅ ) |
| 20 | sseq0 | ⊢ ( ( ( 𝐼 ∩ 𝐽 ) ⊆ 𝐼 ∧ 𝐼 = ∅ ) → ( 𝐼 ∩ 𝐽 ) = ∅ ) | |
| 21 | 17 19 20 | sylancr | ⊢ ( ¬ 𝑅 ∈ V → ( 𝐼 ∩ 𝐽 ) = ∅ ) |
| 22 | 16 21 | eqtr4d | ⊢ ( ¬ 𝑅 ∈ V → ( 2Ideal ‘ 𝑅 ) = ( 𝐼 ∩ 𝐽 ) ) |
| 23 | 15 22 | pm2.61i | ⊢ ( 2Ideal ‘ 𝑅 ) = ( 𝐼 ∩ 𝐽 ) |
| 24 | 4 23 | eqtri | ⊢ 𝑇 = ( 𝐼 ∩ 𝐽 ) |