This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If S is a two-sided ideal in R , then U = R / S is a ring, called the quotient ring of R by S . (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusring.u | ⊢ 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) | |
| qusring.i | ⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) | ||
| Assertion | qusring | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑈 ∈ Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusring.u | ⊢ 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) | |
| 2 | qusring.i | ⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 4 | 1 2 3 | qus1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( 𝑈 ∈ Ring ∧ [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑆 ) = ( 1r ‘ 𝑈 ) ) ) |
| 5 | 4 | simpld | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑈 ∈ Ring ) |