This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusring.u | ⊢ 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) | |
| qusring.i | ⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) | ||
| qus1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | qus1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( 𝑈 ∈ Ring ∧ [ 1 ] ( 𝑅 ~QG 𝑆 ) = ( 1r ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusring.u | ⊢ 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) | |
| 2 | qusring.i | ⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) | |
| 3 | qus1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | 1 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) ) |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | 5 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
| 7 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 9 | eqid | ⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) | |
| 10 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) | |
| 12 | 9 10 11 2 | 2idlval | ⊢ 𝐼 = ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 13 | 12 | elin2 | ⊢ ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 14 | 13 | simplbi | ⊢ ( 𝑆 ∈ 𝐼 → 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 15 | 9 | lidlsubg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 16 | 14 15 | sylan2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 17 | eqid | ⊢ ( 𝑅 ~QG 𝑆 ) = ( 𝑅 ~QG 𝑆 ) | |
| 18 | 5 17 | eqger | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝑆 ) Er ( Base ‘ 𝑅 ) ) |
| 19 | 16 18 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( 𝑅 ~QG 𝑆 ) Er ( Base ‘ 𝑅 ) ) |
| 20 | ringabl | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Abel ) | |
| 21 | 20 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑅 ∈ Abel ) |
| 22 | ablnsg | ⊢ ( 𝑅 ∈ Abel → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) ) |
| 24 | 16 23 | eleqtrrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| 25 | 5 17 7 | eqgcpbl | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝑅 ) → ( ( 𝑎 ( 𝑅 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝑅 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( 𝑅 ~QG 𝑆 ) ( 𝑐 ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
| 26 | 24 25 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( ( 𝑎 ( 𝑅 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝑅 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( 𝑅 ~QG 𝑆 ) ( 𝑐 ( +g ‘ 𝑅 ) 𝑑 ) ) ) |
| 27 | 5 17 2 8 | 2idlcpbl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( ( 𝑎 ( 𝑅 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝑅 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( 𝑅 ~QG 𝑆 ) ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ) ) |
| 28 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑅 ∈ Ring ) | |
| 29 | 4 6 7 8 3 19 26 27 28 | qusring2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( 𝑈 ∈ Ring ∧ [ 1 ] ( 𝑅 ~QG 𝑆 ) = ( 1r ‘ 𝑈 ) ) ) |