This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ablnsg | ⊢ ( 𝐺 ∈ Abel → ( NrmSGrp ‘ 𝐺 ) = ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 3 | 1 2 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 4 | 3 | 3expb | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 5 | 4 | eleq1d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑥 ) ) |
| 6 | 5 | ralrimivva | ⊢ ( 𝐺 ∈ Abel → ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑥 ) ) |
| 7 | 1 2 | isnsg | ⊢ ( 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑥 ) ) ) |
| 8 | 7 | rbaib | ⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑥 ) → ( 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| 9 | 6 8 | syl | ⊢ ( 𝐺 ∈ Abel → ( 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| 10 | 9 | eqrdv | ⊢ ( 𝐺 ∈ Abel → ( NrmSGrp ‘ 𝐺 ) = ( SubGrp ‘ 𝐺 ) ) |