This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If Y is a normal subgroup of G , then the "natural map" from elements to their cosets is a group homomorphism from G to G / Y . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusghm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| qusghm.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) | ||
| qusghm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) | ||
| Assertion | qusghm | ⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusghm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | qusghm.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) | |
| 3 | qusghm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 7 | nsgsubg | ⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 8 | subgrcl | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 10 | 2 | qusgrp | ⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 11 | 2 1 4 | quseccl | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ ( Base ‘ 𝐻 ) ) |
| 12 | 11 3 | fmptd | ⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐹 : 𝑋 ⟶ ( Base ‘ 𝐻 ) ) |
| 13 | 2 1 5 6 | qusadd | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ( +g ‘ 𝐻 ) [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) = [ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 14 | 13 | 3expb | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ( +g ‘ 𝐻 ) [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) = [ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 15 | eceq1 | ⊢ ( 𝑥 = 𝑦 → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 16 | ovex | ⊢ ( 𝐺 ~QG 𝑌 ) ∈ V | |
| 17 | ecexg | ⊢ ( ( 𝐺 ~QG 𝑌 ) ∈ V → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ V ) | |
| 18 | 16 17 | ax-mp | ⊢ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ V |
| 19 | 15 3 18 | fvmpt3i | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ) |
| 20 | 19 | ad2antrl | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ) |
| 21 | eceq1 | ⊢ ( 𝑥 = 𝑧 → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 22 | 21 3 18 | fvmpt3i | ⊢ ( 𝑧 ∈ 𝑋 → ( 𝐹 ‘ 𝑧 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) |
| 23 | 22 | ad2antll | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) |
| 24 | 20 23 | oveq12d | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) = ( [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ( +g ‘ 𝐻 ) [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) ) |
| 25 | 1 5 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
| 26 | 25 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
| 27 | 9 26 | sylan | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
| 28 | eceq1 | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ] ( 𝐺 ~QG 𝑌 ) ) | |
| 29 | 28 3 18 | fvmpt3i | ⊢ ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = [ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 30 | 27 29 | syl | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = [ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 31 | 14 24 30 | 3eqtr4rd | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 32 | 1 4 5 6 9 10 12 31 | isghmd | ⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |