This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrhmd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isrhmd.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| isrhmd.n | ⊢ 𝑁 = ( 1r ‘ 𝑆 ) | ||
| isrhmd.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| isrhmd.u | ⊢ × = ( .r ‘ 𝑆 ) | ||
| isrhmd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| isrhmd.s | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) | ||
| isrhmd.ho | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = 𝑁 ) | ||
| isrhmd.ht | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) × ( 𝐹 ‘ 𝑦 ) ) ) | ||
| isrhm2d.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | ||
| Assertion | isrhm2d | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrhmd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isrhmd.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | isrhmd.n | ⊢ 𝑁 = ( 1r ‘ 𝑆 ) | |
| 4 | isrhmd.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | isrhmd.u | ⊢ × = ( .r ‘ 𝑆 ) | |
| 6 | isrhmd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 7 | isrhmd.s | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) | |
| 8 | isrhmd.ho | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = 𝑁 ) | |
| 9 | isrhmd.ht | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) × ( 𝐹 ‘ 𝑦 ) ) ) | |
| 10 | isrhm2d.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 11 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 12 | 11 | ringmgp | ⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 13 | 6 12 | syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 14 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 15 | 14 | ringmgp | ⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 16 | 7 15 | syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 17 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 18 | 1 17 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
| 19 | 10 18 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
| 20 | 9 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) × ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 | 11 2 | ringidval | ⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 22 | 21 | fveq2i | ⊢ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 23 | 14 3 | ringidval | ⊢ 𝑁 = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 24 | 8 22 23 | 3eqtr3g | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) ) |
| 25 | 19 20 24 | 3jca | ⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) × ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) ) ) |
| 26 | 11 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 27 | 14 17 | mgpbas | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
| 28 | 11 4 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 29 | 14 5 | mgpplusg | ⊢ × = ( +g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 30 | eqid | ⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 31 | eqid | ⊢ ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) | |
| 32 | 26 27 28 29 30 31 | ismhm | ⊢ ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ↔ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ( mulGrp ‘ 𝑆 ) ∈ Mnd ) ∧ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) × ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 33 | 13 16 25 32 | syl21anbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
| 34 | 10 33 | jca | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) |
| 35 | 11 14 | isrhm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 36 | 6 7 34 35 | syl21anbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |