This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If S is a two-sided ideal in R , then the "natural map" from elements to their cosets is a ring homomorphism from R to R / S . (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusring.u | |- U = ( R /s ( R ~QG S ) ) |
|
| qusring.i | |- I = ( 2Ideal ` R ) |
||
| qusrhm.x | |- X = ( Base ` R ) |
||
| qusrhm.f | |- F = ( x e. X |-> [ x ] ( R ~QG S ) ) |
||
| Assertion | qusrhm | |- ( ( R e. Ring /\ S e. I ) -> F e. ( R RingHom U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusring.u | |- U = ( R /s ( R ~QG S ) ) |
|
| 2 | qusring.i | |- I = ( 2Ideal ` R ) |
|
| 3 | qusrhm.x | |- X = ( Base ` R ) |
|
| 4 | qusrhm.f | |- F = ( x e. X |-> [ x ] ( R ~QG S ) ) |
|
| 5 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 6 | eqid | |- ( 1r ` U ) = ( 1r ` U ) |
|
| 7 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 8 | eqid | |- ( .r ` U ) = ( .r ` U ) |
|
| 9 | simpl | |- ( ( R e. Ring /\ S e. I ) -> R e. Ring ) |
|
| 10 | 1 2 | qusring | |- ( ( R e. Ring /\ S e. I ) -> U e. Ring ) |
| 11 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
| 12 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 13 | eqid | |- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
|
| 14 | 11 12 13 2 | 2idlval | |- I = ( ( LIdeal ` R ) i^i ( LIdeal ` ( oppR ` R ) ) ) |
| 15 | 14 | elin2 | |- ( S e. I <-> ( S e. ( LIdeal ` R ) /\ S e. ( LIdeal ` ( oppR ` R ) ) ) ) |
| 16 | 15 | simplbi | |- ( S e. I -> S e. ( LIdeal ` R ) ) |
| 17 | 11 | lidlsubg | |- ( ( R e. Ring /\ S e. ( LIdeal ` R ) ) -> S e. ( SubGrp ` R ) ) |
| 18 | 16 17 | sylan2 | |- ( ( R e. Ring /\ S e. I ) -> S e. ( SubGrp ` R ) ) |
| 19 | eqid | |- ( R ~QG S ) = ( R ~QG S ) |
|
| 20 | 3 19 | eqger | |- ( S e. ( SubGrp ` R ) -> ( R ~QG S ) Er X ) |
| 21 | 18 20 | syl | |- ( ( R e. Ring /\ S e. I ) -> ( R ~QG S ) Er X ) |
| 22 | 3 | fvexi | |- X e. _V |
| 23 | 22 | a1i | |- ( ( R e. Ring /\ S e. I ) -> X e. _V ) |
| 24 | 21 23 4 | divsfval | |- ( ( R e. Ring /\ S e. I ) -> ( F ` ( 1r ` R ) ) = [ ( 1r ` R ) ] ( R ~QG S ) ) |
| 25 | 1 2 5 | qus1 | |- ( ( R e. Ring /\ S e. I ) -> ( U e. Ring /\ [ ( 1r ` R ) ] ( R ~QG S ) = ( 1r ` U ) ) ) |
| 26 | 25 | simprd | |- ( ( R e. Ring /\ S e. I ) -> [ ( 1r ` R ) ] ( R ~QG S ) = ( 1r ` U ) ) |
| 27 | 24 26 | eqtrd | |- ( ( R e. Ring /\ S e. I ) -> ( F ` ( 1r ` R ) ) = ( 1r ` U ) ) |
| 28 | 1 | a1i | |- ( ( R e. Ring /\ S e. I ) -> U = ( R /s ( R ~QG S ) ) ) |
| 29 | 3 | a1i | |- ( ( R e. Ring /\ S e. I ) -> X = ( Base ` R ) ) |
| 30 | 3 19 2 7 | 2idlcpbl | |- ( ( R e. Ring /\ S e. I ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( .r ` R ) b ) ( R ~QG S ) ( c ( .r ` R ) d ) ) ) |
| 31 | 3 7 | ringcl | |- ( ( R e. Ring /\ y e. X /\ z e. X ) -> ( y ( .r ` R ) z ) e. X ) |
| 32 | 31 | 3expb | |- ( ( R e. Ring /\ ( y e. X /\ z e. X ) ) -> ( y ( .r ` R ) z ) e. X ) |
| 33 | 32 | adantlr | |- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( y ( .r ` R ) z ) e. X ) |
| 34 | 33 | caovclg | |- ( ( ( R e. Ring /\ S e. I ) /\ ( c e. X /\ d e. X ) ) -> ( c ( .r ` R ) d ) e. X ) |
| 35 | 28 29 21 9 30 34 7 8 | qusmulval | |- ( ( ( R e. Ring /\ S e. I ) /\ y e. X /\ z e. X ) -> ( [ y ] ( R ~QG S ) ( .r ` U ) [ z ] ( R ~QG S ) ) = [ ( y ( .r ` R ) z ) ] ( R ~QG S ) ) |
| 36 | 35 | 3expb | |- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( [ y ] ( R ~QG S ) ( .r ` U ) [ z ] ( R ~QG S ) ) = [ ( y ( .r ` R ) z ) ] ( R ~QG S ) ) |
| 37 | 21 | adantr | |- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( R ~QG S ) Er X ) |
| 38 | 22 | a1i | |- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> X e. _V ) |
| 39 | 37 38 4 | divsfval | |- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( F ` y ) = [ y ] ( R ~QG S ) ) |
| 40 | 37 38 4 | divsfval | |- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( F ` z ) = [ z ] ( R ~QG S ) ) |
| 41 | 39 40 | oveq12d | |- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( ( F ` y ) ( .r ` U ) ( F ` z ) ) = ( [ y ] ( R ~QG S ) ( .r ` U ) [ z ] ( R ~QG S ) ) ) |
| 42 | 37 38 4 | divsfval | |- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( F ` ( y ( .r ` R ) z ) ) = [ ( y ( .r ` R ) z ) ] ( R ~QG S ) ) |
| 43 | 36 41 42 | 3eqtr4rd | |- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( F ` ( y ( .r ` R ) z ) ) = ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) |
| 44 | ringabl | |- ( R e. Ring -> R e. Abel ) |
|
| 45 | 44 | adantr | |- ( ( R e. Ring /\ S e. I ) -> R e. Abel ) |
| 46 | ablnsg | |- ( R e. Abel -> ( NrmSGrp ` R ) = ( SubGrp ` R ) ) |
|
| 47 | 45 46 | syl | |- ( ( R e. Ring /\ S e. I ) -> ( NrmSGrp ` R ) = ( SubGrp ` R ) ) |
| 48 | 18 47 | eleqtrrd | |- ( ( R e. Ring /\ S e. I ) -> S e. ( NrmSGrp ` R ) ) |
| 49 | 3 1 4 | qusghm | |- ( S e. ( NrmSGrp ` R ) -> F e. ( R GrpHom U ) ) |
| 50 | 48 49 | syl | |- ( ( R e. Ring /\ S e. I ) -> F e. ( R GrpHom U ) ) |
| 51 | 3 5 6 7 8 9 10 27 43 50 | isrhm2d | |- ( ( R e. Ring /\ S e. I ) -> F e. ( R RingHom U ) ) |