This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage of an ideal by a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 30-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rhmpreimaidl.i | ⊢ 𝐼 = ( LIdeal ‘ 𝑅 ) | |
| Assertion | rhmpreimaidl | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( ◡ 𝐹 “ 𝐽 ) ∈ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmpreimaidl.i | ⊢ 𝐼 = ( LIdeal ‘ 𝑅 ) | |
| 2 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝐽 ) ⊆ dom 𝐹 | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 5 | 3 4 | rhmf | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 6 | 2 5 | fssdm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ◡ 𝐹 “ 𝐽 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( ◡ 𝐹 “ 𝐽 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 8 | 5 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 9 | 8 | ffund | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → Fun 𝐹 ) |
| 10 | rhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
| 12 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 13 | 3 12 | ring0cl | ⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 14 | 11 13 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 15 | 8 | fdmd | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → dom 𝐹 = ( Base ‘ 𝑅 ) ) |
| 16 | 14 15 | eleqtrrd | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( 0g ‘ 𝑅 ) ∈ dom 𝐹 ) |
| 17 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 18 | ghmmhm | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ) | |
| 19 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 20 | 12 19 | mhm0 | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 21 | 17 18 20 | 3syl | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 23 | rhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) | |
| 24 | eqid | ⊢ ( LIdeal ‘ 𝑆 ) = ( LIdeal ‘ 𝑆 ) | |
| 25 | 24 19 | lidl0cl | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( 0g ‘ 𝑆 ) ∈ 𝐽 ) |
| 26 | 23 25 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( 0g ‘ 𝑆 ) ∈ 𝐽 ) |
| 27 | 22 26 | eqeltrd | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ∈ 𝐽 ) |
| 28 | fvimacnv | ⊢ ( ( Fun 𝐹 ∧ ( 0g ‘ 𝑅 ) ∈ dom 𝐹 ) → ( ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ∈ 𝐽 ↔ ( 0g ‘ 𝑅 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) ) | |
| 29 | 28 | biimpa | ⊢ ( ( ( Fun 𝐹 ∧ ( 0g ‘ 𝑅 ) ∈ dom 𝐹 ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ∈ 𝐽 ) → ( 0g ‘ 𝑅 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) |
| 30 | 9 16 27 29 | syl21anc | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( 0g ‘ 𝑅 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) |
| 31 | 30 | ne0d | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( ◡ 𝐹 “ 𝐽 ) ≠ ∅ ) |
| 32 | 8 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → 𝐹 Fn ( Base ‘ 𝑅 ) ) |
| 33 | 32 | ad3antrrr | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝐹 Fn ( Base ‘ 𝑅 ) ) |
| 34 | 11 | ad3antrrr | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑅 ∈ Ring ) |
| 35 | simpllr | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) | |
| 36 | 6 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ◡ 𝐹 “ 𝐽 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 37 | 36 | sselda | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
| 38 | 37 | adantr | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
| 39 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 40 | 3 39 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ ( Base ‘ 𝑅 ) ) |
| 41 | 34 35 38 40 | syl3anc | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ ( Base ‘ 𝑅 ) ) |
| 42 | 36 | adantr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( ◡ 𝐹 “ 𝐽 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 43 | 42 | sselda | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
| 44 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 45 | 3 44 | ringacl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 46 | 34 41 43 45 | syl3anc | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 47 | 17 | ad4antr | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 48 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 49 | 3 44 48 | ghmlin | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 50 | 47 41 43 49 | syl3anc | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 51 | simp-4l | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | |
| 52 | 51 23 | syl | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑆 ∈ Ring ) |
| 53 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) | |
| 54 | 53 | ad3antrrr | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) |
| 55 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 56 | 3 39 55 | rhmmul | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑎 ) ) ) |
| 57 | 51 35 38 56 | syl3anc | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑎 ) ) ) |
| 58 | 8 | ffvelcdmda | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 59 | 58 | ad2antrr | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 60 | simplr | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) | |
| 61 | elpreima | ⊢ ( 𝐹 Fn ( Base ‘ 𝑅 ) → ( 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ↔ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝐽 ) ) ) | |
| 62 | 61 | simplbda | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐽 ) |
| 63 | 33 60 62 | syl2anc | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐽 ) |
| 64 | 24 4 55 | lidlmcl | ⊢ ( ( ( 𝑆 ∈ Ring ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝐽 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑎 ) ) ∈ 𝐽 ) |
| 65 | 52 54 59 63 64 | syl22anc | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑎 ) ) ∈ 𝐽 ) |
| 66 | 57 65 | eqeltrd | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) ∈ 𝐽 ) |
| 67 | simpr | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) | |
| 68 | elpreima | ⊢ ( 𝐹 Fn ( Base ‘ 𝑅 ) → ( 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ↔ ( 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝐽 ) ) ) | |
| 69 | 68 | simplbda | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐽 ) |
| 70 | 33 67 69 | syl2anc | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐽 ) |
| 71 | 24 48 | lidlacl | ⊢ ( ( ( 𝑆 ∈ Ring ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) ∈ 𝐽 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝐽 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ∈ 𝐽 ) |
| 72 | 52 54 66 70 71 | syl22anc | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ∈ 𝐽 ) |
| 73 | 50 72 | eqeltrd | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ) ∈ 𝐽 ) |
| 74 | 33 46 73 | elpreimad | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) |
| 75 | 74 | anasss | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) |
| 76 | 75 | ralrimivva | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ∀ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) |
| 77 | 76 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) |
| 78 | 1 3 44 39 | islidl | ⊢ ( ( ◡ 𝐹 “ 𝐽 ) ∈ 𝐼 ↔ ( ( ◡ 𝐹 “ 𝐽 ) ⊆ ( Base ‘ 𝑅 ) ∧ ( ◡ 𝐹 “ 𝐽 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) ) |
| 79 | 7 31 77 78 | syl3anbrc | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( ◡ 𝐹 “ 𝐽 ) ∈ 𝐼 ) |