This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonnegative real is less than any positive rational, it is zero. (Contributed by NM, 6-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qsqueeze | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → 𝐴 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | ltnle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) |
| 4 | qbtwnre | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ 𝑥 < 𝐴 ) ) | |
| 5 | 1 4 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ 𝑥 < 𝐴 ) ) |
| 6 | 5 | ex | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ 𝑥 < 𝐴 ) ) ) |
| 7 | qre | ⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ ) | |
| 8 | ltnsym | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 < 𝑥 → ¬ 𝑥 < 𝐴 ) ) | |
| 9 | 8 | con2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < 𝐴 → ¬ 𝐴 < 𝑥 ) ) |
| 10 | 7 9 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℚ ) → ( 𝑥 < 𝐴 → ¬ 𝐴 < 𝑥 ) ) |
| 11 | 10 | anim2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℚ ) → ( ( 0 < 𝑥 ∧ 𝑥 < 𝐴 ) → ( 0 < 𝑥 ∧ ¬ 𝐴 < 𝑥 ) ) ) |
| 12 | 11 | reximdva | ⊢ ( 𝐴 ∈ ℝ → ( ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ 𝑥 < 𝐴 ) → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ ¬ 𝐴 < 𝑥 ) ) ) |
| 13 | 6 12 | syld | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ ¬ 𝐴 < 𝑥 ) ) ) |
| 14 | 3 13 | sylbird | ⊢ ( 𝐴 ∈ ℝ → ( ¬ 𝐴 ≤ 0 → ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ ¬ 𝐴 < 𝑥 ) ) ) |
| 15 | rexanali | ⊢ ( ∃ 𝑥 ∈ ℚ ( 0 < 𝑥 ∧ ¬ 𝐴 < 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) | |
| 16 | 14 15 | imbitrdi | ⊢ ( 𝐴 ∈ ℝ → ( ¬ 𝐴 ≤ 0 → ¬ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) ) |
| 17 | 16 | con4d | ⊢ ( 𝐴 ∈ ℝ → ( ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → 𝐴 ≤ 0 ) ) |
| 18 | 17 | imp | ⊢ ( ( 𝐴 ∈ ℝ ∧ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → 𝐴 ≤ 0 ) |
| 19 | 18 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → 𝐴 ≤ 0 ) |
| 20 | letri3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 = 0 ↔ ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ) ) | |
| 21 | 1 20 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 = 0 ↔ ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ) ) |
| 22 | 21 | rbaibd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 = 0 ↔ 𝐴 ≤ 0 ) ) |
| 23 | 22 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → ( 𝐴 = 0 ↔ 𝐴 ≤ 0 ) ) |
| 24 | 19 23 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ ℚ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → 𝐴 = 0 ) |