This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015) (Proof shortened by AV, 18-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwxpndom2 | ⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwfseq | ⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| 2 | reldom | ⊢ Rel ≼ | |
| 3 | 2 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
| 4 | df1o2 | ⊢ 1o = { ∅ } | |
| 5 | 4 | oveq2i | ⊢ ( 𝐴 ↑m 1o ) = ( 𝐴 ↑m { ∅ } ) |
| 6 | id | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ V ) | |
| 7 | 0ex | ⊢ ∅ ∈ V | |
| 8 | 7 | a1i | ⊢ ( 𝐴 ∈ V → ∅ ∈ V ) |
| 9 | 6 8 | mapsnend | ⊢ ( 𝐴 ∈ V → ( 𝐴 ↑m { ∅ } ) ≈ 𝐴 ) |
| 10 | 5 9 | eqbrtrid | ⊢ ( 𝐴 ∈ V → ( 𝐴 ↑m 1o ) ≈ 𝐴 ) |
| 11 | ensym | ⊢ ( ( 𝐴 ↑m 1o ) ≈ 𝐴 → 𝐴 ≈ ( 𝐴 ↑m 1o ) ) | |
| 12 | 3 10 11 | 3syl | ⊢ ( ω ≼ 𝐴 → 𝐴 ≈ ( 𝐴 ↑m 1o ) ) |
| 13 | map2xp | ⊢ ( 𝐴 ∈ V → ( 𝐴 ↑m 2o ) ≈ ( 𝐴 × 𝐴 ) ) | |
| 14 | ensym | ⊢ ( ( 𝐴 ↑m 2o ) ≈ ( 𝐴 × 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ ( 𝐴 ↑m 2o ) ) | |
| 15 | 3 13 14 | 3syl | ⊢ ( ω ≼ 𝐴 → ( 𝐴 × 𝐴 ) ≈ ( 𝐴 ↑m 2o ) ) |
| 16 | elmapi | ⊢ ( 𝑥 ∈ ( 𝐴 ↑m 1o ) → 𝑥 : 1o ⟶ 𝐴 ) | |
| 17 | 16 | fdmd | ⊢ ( 𝑥 ∈ ( 𝐴 ↑m 1o ) → dom 𝑥 = 1o ) |
| 18 | 17 | adantr | ⊢ ( ( 𝑥 ∈ ( 𝐴 ↑m 1o ) ∧ 𝑥 ∈ ( 𝐴 ↑m 2o ) ) → dom 𝑥 = 1o ) |
| 19 | 1oex | ⊢ 1o ∈ V | |
| 20 | 19 | sucid | ⊢ 1o ∈ suc 1o |
| 21 | df-2o | ⊢ 2o = suc 1o | |
| 22 | 20 21 | eleqtrri | ⊢ 1o ∈ 2o |
| 23 | 1on | ⊢ 1o ∈ On | |
| 24 | 23 | onirri | ⊢ ¬ 1o ∈ 1o |
| 25 | nelneq2 | ⊢ ( ( 1o ∈ 2o ∧ ¬ 1o ∈ 1o ) → ¬ 2o = 1o ) | |
| 26 | 22 24 25 | mp2an | ⊢ ¬ 2o = 1o |
| 27 | elmapi | ⊢ ( 𝑥 ∈ ( 𝐴 ↑m 2o ) → 𝑥 : 2o ⟶ 𝐴 ) | |
| 28 | 27 | fdmd | ⊢ ( 𝑥 ∈ ( 𝐴 ↑m 2o ) → dom 𝑥 = 2o ) |
| 29 | 28 | adantl | ⊢ ( ( 𝑥 ∈ ( 𝐴 ↑m 1o ) ∧ 𝑥 ∈ ( 𝐴 ↑m 2o ) ) → dom 𝑥 = 2o ) |
| 30 | 29 | eqeq1d | ⊢ ( ( 𝑥 ∈ ( 𝐴 ↑m 1o ) ∧ 𝑥 ∈ ( 𝐴 ↑m 2o ) ) → ( dom 𝑥 = 1o ↔ 2o = 1o ) ) |
| 31 | 26 30 | mtbiri | ⊢ ( ( 𝑥 ∈ ( 𝐴 ↑m 1o ) ∧ 𝑥 ∈ ( 𝐴 ↑m 2o ) ) → ¬ dom 𝑥 = 1o ) |
| 32 | 18 31 | pm2.65i | ⊢ ¬ ( 𝑥 ∈ ( 𝐴 ↑m 1o ) ∧ 𝑥 ∈ ( 𝐴 ↑m 2o ) ) |
| 33 | elin | ⊢ ( 𝑥 ∈ ( ( 𝐴 ↑m 1o ) ∩ ( 𝐴 ↑m 2o ) ) ↔ ( 𝑥 ∈ ( 𝐴 ↑m 1o ) ∧ 𝑥 ∈ ( 𝐴 ↑m 2o ) ) ) | |
| 34 | 32 33 | mtbir | ⊢ ¬ 𝑥 ∈ ( ( 𝐴 ↑m 1o ) ∩ ( 𝐴 ↑m 2o ) ) |
| 35 | 34 | a1i | ⊢ ( ω ≼ 𝐴 → ¬ 𝑥 ∈ ( ( 𝐴 ↑m 1o ) ∩ ( 𝐴 ↑m 2o ) ) ) |
| 36 | 35 | eq0rdv | ⊢ ( ω ≼ 𝐴 → ( ( 𝐴 ↑m 1o ) ∩ ( 𝐴 ↑m 2o ) ) = ∅ ) |
| 37 | djuenun | ⊢ ( ( 𝐴 ≈ ( 𝐴 ↑m 1o ) ∧ ( 𝐴 × 𝐴 ) ≈ ( 𝐴 ↑m 2o ) ∧ ( ( 𝐴 ↑m 1o ) ∩ ( 𝐴 ↑m 2o ) ) = ∅ ) → ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≈ ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ) | |
| 38 | 12 15 36 37 | syl3anc | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≈ ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ) |
| 39 | omex | ⊢ ω ∈ V | |
| 40 | ovex | ⊢ ( 𝐴 ↑m 𝑛 ) ∈ V | |
| 41 | 39 40 | iunex | ⊢ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∈ V |
| 42 | 1onn | ⊢ 1o ∈ ω | |
| 43 | oveq2 | ⊢ ( 𝑛 = 1o → ( 𝐴 ↑m 𝑛 ) = ( 𝐴 ↑m 1o ) ) | |
| 44 | 43 | ssiun2s | ⊢ ( 1o ∈ ω → ( 𝐴 ↑m 1o ) ⊆ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 45 | 42 44 | ax-mp | ⊢ ( 𝐴 ↑m 1o ) ⊆ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) |
| 46 | 2onn | ⊢ 2o ∈ ω | |
| 47 | oveq2 | ⊢ ( 𝑛 = 2o → ( 𝐴 ↑m 𝑛 ) = ( 𝐴 ↑m 2o ) ) | |
| 48 | 47 | ssiun2s | ⊢ ( 2o ∈ ω → ( 𝐴 ↑m 2o ) ⊆ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 49 | 46 48 | ax-mp | ⊢ ( 𝐴 ↑m 2o ) ⊆ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) |
| 50 | 45 49 | unssi | ⊢ ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ⊆ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) |
| 51 | ssdomg | ⊢ ( ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∈ V → ( ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ⊆ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) → ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) ) | |
| 52 | 41 50 51 | mp2 | ⊢ ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) |
| 53 | endomtr | ⊢ ( ( ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≈ ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ∧ ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) → ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| 54 | 38 52 53 | sylancl | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 55 | domtr | ⊢ ( ( 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ∧ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) → 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| 56 | 55 | expcom | ⊢ ( ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) → ( 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) → 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) ) |
| 57 | 54 56 | syl | ⊢ ( ω ≼ 𝐴 → ( 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) → 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) ) |
| 58 | 1 57 | mtod | ⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |