This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015) (Proof shortened by AV, 17-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | map2xp | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ↑m 2o ) ≈ ( 𝐴 × 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 2 | df-pr | ⊢ { ∅ , 1o } = ( { ∅ } ∪ { 1o } ) | |
| 3 | 1 2 | eqtri | ⊢ 2o = ( { ∅ } ∪ { 1o } ) |
| 4 | 3 | oveq2i | ⊢ ( 𝐴 ↑m 2o ) = ( 𝐴 ↑m ( { ∅ } ∪ { 1o } ) ) |
| 5 | snex | ⊢ { ∅ } ∈ V | |
| 6 | 5 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → { ∅ } ∈ V ) |
| 7 | snex | ⊢ { 1o } ∈ V | |
| 8 | 7 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → { 1o } ∈ V ) |
| 9 | id | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) | |
| 10 | 1n0 | ⊢ 1o ≠ ∅ | |
| 11 | 10 | neii | ⊢ ¬ 1o = ∅ |
| 12 | elsni | ⊢ ( 1o ∈ { ∅ } → 1o = ∅ ) | |
| 13 | 11 12 | mto | ⊢ ¬ 1o ∈ { ∅ } |
| 14 | disjsn | ⊢ ( ( { ∅ } ∩ { 1o } ) = ∅ ↔ ¬ 1o ∈ { ∅ } ) | |
| 15 | 13 14 | mpbir | ⊢ ( { ∅ } ∩ { 1o } ) = ∅ |
| 16 | 15 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( { ∅ } ∩ { 1o } ) = ∅ ) |
| 17 | mapunen | ⊢ ( ( ( { ∅ } ∈ V ∧ { 1o } ∈ V ∧ 𝐴 ∈ 𝑉 ) ∧ ( { ∅ } ∩ { 1o } ) = ∅ ) → ( 𝐴 ↑m ( { ∅ } ∪ { 1o } ) ) ≈ ( ( 𝐴 ↑m { ∅ } ) × ( 𝐴 ↑m { 1o } ) ) ) | |
| 18 | 6 8 9 16 17 | syl31anc | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ↑m ( { ∅ } ∪ { 1o } ) ) ≈ ( ( 𝐴 ↑m { ∅ } ) × ( 𝐴 ↑m { 1o } ) ) ) |
| 19 | 4 18 | eqbrtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ↑m 2o ) ≈ ( ( 𝐴 ↑m { ∅ } ) × ( 𝐴 ↑m { 1o } ) ) ) |
| 20 | 0ex | ⊢ ∅ ∈ V | |
| 21 | 20 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ∅ ∈ V ) |
| 22 | 9 21 | mapsnend | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ↑m { ∅ } ) ≈ 𝐴 ) |
| 23 | 1oex | ⊢ 1o ∈ V | |
| 24 | 23 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → 1o ∈ V ) |
| 25 | 9 24 | mapsnend | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ↑m { 1o } ) ≈ 𝐴 ) |
| 26 | xpen | ⊢ ( ( ( 𝐴 ↑m { ∅ } ) ≈ 𝐴 ∧ ( 𝐴 ↑m { 1o } ) ≈ 𝐴 ) → ( ( 𝐴 ↑m { ∅ } ) × ( 𝐴 ↑m { 1o } ) ) ≈ ( 𝐴 × 𝐴 ) ) | |
| 27 | 22 25 26 | syl2anc | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑m { ∅ } ) × ( 𝐴 ↑m { 1o } ) ) ≈ ( 𝐴 × 𝐴 ) ) |
| 28 | entr | ⊢ ( ( ( 𝐴 ↑m 2o ) ≈ ( ( 𝐴 ↑m { ∅ } ) × ( 𝐴 ↑m { 1o } ) ) ∧ ( ( 𝐴 ↑m { ∅ } ) × ( 𝐴 ↑m { 1o } ) ) ≈ ( 𝐴 × 𝐴 ) ) → ( 𝐴 ↑m 2o ) ≈ ( 𝐴 × 𝐴 ) ) | |
| 29 | 19 27 28 | syl2anc | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ↑m 2o ) ≈ ( 𝐴 × 𝐴 ) ) |