This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015) (Revised by Jim Kingdon, 19-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuenun | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuen | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐵 ⊔ 𝐷 ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐵 ⊔ 𝐷 ) ) |
| 3 | relen | ⊢ Rel ≈ | |
| 4 | 3 | brrelex2i | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
| 5 | 3 | brrelex2i | ⊢ ( 𝐶 ≈ 𝐷 → 𝐷 ∈ V ) |
| 6 | id | ⊢ ( ( 𝐵 ∩ 𝐷 ) = ∅ → ( 𝐵 ∩ 𝐷 ) = ∅ ) | |
| 7 | endjudisj | ⊢ ( ( 𝐵 ∈ V ∧ 𝐷 ∈ V ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐵 ⊔ 𝐷 ) ≈ ( 𝐵 ∪ 𝐷 ) ) | |
| 8 | 4 5 6 7 | syl3an | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐵 ⊔ 𝐷 ) ≈ ( 𝐵 ∪ 𝐷 ) ) |
| 9 | entr | ⊢ ( ( ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐵 ⊔ 𝐷 ) ∧ ( 𝐵 ⊔ 𝐷 ) ≈ ( 𝐵 ∪ 𝐷 ) ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) | |
| 10 | 2 8 9 | syl2anc | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) |