This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of TakeutiZaring p. 96. (Contributed by Mario Carneiro, 6-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pw2f1o.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| pw2f1o.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| pw2f1o.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | ||
| pw2f1o.4 | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | ||
| pw2f1o.5 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ) | ||
| Assertion | pw2f1o | ⊢ ( 𝜑 → 𝐹 : 𝒫 𝐴 –1-1-onto→ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2f1o.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | pw2f1o.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | pw2f1o.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | |
| 4 | pw2f1o.4 | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | |
| 5 | pw2f1o.5 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ) | |
| 6 | eqid | ⊢ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) | |
| 7 | 1 2 3 4 | pw2f1olem | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ) ↔ ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ∧ 𝑥 = ( ◡ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) “ { 𝐶 } ) ) ) ) |
| 8 | 7 | biimpa | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ) ) → ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ∧ 𝑥 = ( ◡ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) “ { 𝐶 } ) ) ) |
| 9 | 6 8 | mpanr2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) → ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ∧ 𝑥 = ( ◡ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) “ { 𝐶 } ) ) ) |
| 10 | 9 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) → ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ) |
| 11 | vex | ⊢ 𝑦 ∈ V | |
| 12 | 11 | cnvex | ⊢ ◡ 𝑦 ∈ V |
| 13 | 12 | imaex | ⊢ ( ◡ 𝑦 “ { 𝐶 } ) ∈ V |
| 14 | 13 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ) → ( ◡ 𝑦 “ { 𝐶 } ) ∈ V ) |
| 15 | 1 2 3 4 | pw2f1olem | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ) ↔ ( 𝑦 ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ∧ 𝑥 = ( ◡ 𝑦 “ { 𝐶 } ) ) ) ) |
| 16 | 5 10 14 15 | f1od | ⊢ ( 𝜑 → 𝐹 : 𝒫 𝐴 –1-1-onto→ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ) |