This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | numwdom | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ≼* 𝐴 ) → 𝐵 ∈ dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brwdomi | ⊢ ( 𝐵 ≼* 𝐴 → ( 𝐵 = ∅ ∨ ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) ) | |
| 2 | simpr | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) | |
| 3 | 0fi | ⊢ ∅ ∈ Fin | |
| 4 | finnum | ⊢ ( ∅ ∈ Fin → ∅ ∈ dom card ) | |
| 5 | 3 4 | ax-mp | ⊢ ∅ ∈ dom card |
| 6 | 2 5 | eqeltrdi | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 = ∅ ) → 𝐵 ∈ dom card ) |
| 7 | fonum | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝑓 : 𝐴 –onto→ 𝐵 ) → 𝐵 ∈ dom card ) | |
| 8 | 7 | ex | ⊢ ( 𝐴 ∈ dom card → ( 𝑓 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ dom card ) ) |
| 9 | 8 | exlimdv | ⊢ ( 𝐴 ∈ dom card → ( ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ dom card ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝐴 ∈ dom card ∧ ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) → 𝐵 ∈ dom card ) |
| 11 | 6 10 | jaodan | ⊢ ( ( 𝐴 ∈ dom card ∧ ( 𝐵 = ∅ ∨ ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) ) → 𝐵 ∈ dom card ) |
| 12 | 1 11 | sylan2 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ≼* 𝐴 ) → 𝐵 ∈ dom card ) |