This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Describe an onto function from the indexed cartesian product to the indexed union. Together with ixpssmapg this shows that U_ x e. A B and X_ x e. A B have closely linked cardinalities. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpiunwdom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼* ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑓 ∈ V | |
| 2 | 1 | elixp | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 3 | 2 | simprbi | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |
| 4 | ssiun2 | ⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
| 5 | 4 | sseld | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 6 | 5 | ralimia | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 7 | 3 6 | syl | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 8 | nfv | ⊢ Ⅎ 𝑦 ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 | |
| 9 | nfiu1 | ⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝐵 | |
| 10 | 9 | nfel2 | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 11 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) | |
| 12 | 11 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 13 | 8 10 12 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 14 | 7 13 | sylib | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 15 | 14 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 16 | 15 | ralrimiva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∀ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 17 | eqid | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) = ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) | |
| 18 | 17 | fmpo | ⊢ ( ∀ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 19 | 16 18 | sylib | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 20 | ixpssmap2g | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) | |
| 21 | 20 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
| 22 | ovex | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ∈ V | |
| 23 | 22 | ssex | ⊢ ( X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) → X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 24 | 21 23 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 25 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → 𝐴 ∈ 𝑉 ) | |
| 26 | 24 25 | xpexd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ∈ V ) |
| 27 | 19 26 | fexd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ∈ V ) |
| 28 | 19 | ffnd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) Fn ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ) |
| 29 | dffn4 | ⊢ ( ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) Fn ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 30 | 28 29 | sylib | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 31 | n0 | ⊢ ( X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) | |
| 32 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) | |
| 33 | nfixp1 | ⊢ Ⅎ 𝑥 X 𝑥 ∈ 𝐴 𝐵 | |
| 34 | 33 | nfel2 | ⊢ Ⅎ 𝑥 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 |
| 35 | nfv | ⊢ Ⅎ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) | |
| 36 | 33 35 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) |
| 37 | simplrr | ⊢ ( ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) | |
| 38 | iftrue | ⊢ ( 𝑘 = 𝑥 → if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) = 𝑧 ) | |
| 39 | csbeq1a | ⊢ ( 𝑥 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) | |
| 40 | 39 | equcoms | ⊢ ( 𝑘 = 𝑥 → 𝐵 = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 41 | 40 | eqcomd | ⊢ ( 𝑘 = 𝑥 → ⦋ 𝑘 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
| 42 | 38 41 | eleq12d | ⊢ ( 𝑘 = 𝑥 → ( if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
| 43 | 37 42 | syl5ibrcom | ⊢ ( ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 = 𝑥 → if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
| 44 | vex | ⊢ 𝑔 ∈ V | |
| 45 | 44 | elixp | ⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 46 | 45 | simprbi | ⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) |
| 47 | 46 | adantr | ⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) |
| 48 | nfv | ⊢ Ⅎ 𝑘 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 | |
| 49 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 | |
| 50 | 49 | nfel2 | ⊢ Ⅎ 𝑥 ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 |
| 51 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑘 ) ) | |
| 52 | 51 39 | eleq12d | ⊢ ( 𝑥 = 𝑘 → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
| 53 | 48 50 52 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 54 | 47 53 | sylib | ⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 55 | 54 | r19.21bi | ⊢ ( ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 56 | iffalse | ⊢ ( ¬ 𝑘 = 𝑥 → if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) = ( 𝑔 ‘ 𝑘 ) ) | |
| 57 | 56 | eleq1d | ⊢ ( ¬ 𝑘 = 𝑥 → ( if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ↔ ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
| 58 | 55 57 | syl5ibrcom | ⊢ ( ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ¬ 𝑘 = 𝑥 → if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
| 59 | 43 58 | pm2.61d | ⊢ ( ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 60 | 59 | ralrimiva | ⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 61 | ixpfn | ⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝑔 Fn 𝐴 ) | |
| 62 | 61 | adantr | ⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑔 Fn 𝐴 ) |
| 63 | 62 | fndmd | ⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → dom 𝑔 = 𝐴 ) |
| 64 | 44 | dmex | ⊢ dom 𝑔 ∈ V |
| 65 | 63 64 | eqeltrrdi | ⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐴 ∈ V ) |
| 66 | mptelixpg | ⊢ ( 𝐴 ∈ V → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ∈ X 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ↔ ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) | |
| 67 | 65 66 | syl | ⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ∈ X 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ↔ ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
| 68 | 60 67 | mpbird | ⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ∈ X 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 69 | nfcv | ⊢ Ⅎ 𝑘 𝐵 | |
| 70 | 69 49 39 | cbvixp | ⊢ X 𝑥 ∈ 𝐴 𝐵 = X 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 |
| 71 | 68 70 | eleqtrrdi | ⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ∈ X 𝑥 ∈ 𝐴 𝐵 ) |
| 72 | simprl | ⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐴 ) | |
| 73 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) | |
| 74 | vex | ⊢ 𝑧 ∈ V | |
| 75 | 38 73 74 | fvmpt | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) = 𝑧 ) |
| 76 | 75 | ad2antrl | ⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) = 𝑧 ) |
| 77 | 76 | eqcomd | ⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) ) |
| 78 | fveq1 | ⊢ ( 𝑓 = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) → ( 𝑓 ‘ 𝑦 ) = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 ) ) | |
| 79 | 78 | eqeq2d | ⊢ ( 𝑓 = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) → ( 𝑧 = ( 𝑓 ‘ 𝑦 ) ↔ 𝑧 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 ) ) ) |
| 80 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 ) = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) ) | |
| 81 | 80 | eqeq2d | ⊢ ( 𝑦 = 𝑥 → ( 𝑧 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 ) ↔ 𝑧 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) ) ) |
| 82 | 79 81 | rspc2ev | ⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) ) → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) |
| 83 | 71 72 77 82 | syl3anc | ⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) |
| 84 | 83 | exp32 | ⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑧 ∈ 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 85 | 34 36 84 | rexlimd | ⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 86 | 32 85 | biimtrid | ⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 87 | 86 | exlimiv | ⊢ ( ∃ 𝑔 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 88 | 31 87 | sylbi | ⊢ ( X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 89 | 88 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 90 | 89 | alrimiv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∀ 𝑧 ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 91 | ssab | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ { 𝑧 ∣ ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) } ↔ ∀ 𝑧 ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) | |
| 92 | 90 91 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ { 𝑧 ∣ ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) } ) |
| 93 | 17 | rnmpo | ⊢ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) = { 𝑧 ∣ ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) } |
| 94 | 92 93 | sseqtrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 95 | 19 | frnd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 96 | 94 95 | eqssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∪ 𝑥 ∈ 𝐴 𝐵 = ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 97 | foeq3 | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 = ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) → ( ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) ) | |
| 98 | 96 97 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 99 | 30 98 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 100 | fowdom | ⊢ ( ( ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ∈ V ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼* ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ) | |
| 101 | 27 99 100 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼* ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ) |