This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002) Avoid ax-un . (Revised by BTernaryTau, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ensn1.1 | ⊢ 𝐴 ∈ V | |
| Assertion | ensn1 | ⊢ { 𝐴 } ≈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensn1.1 | ⊢ 𝐴 ∈ V | |
| 2 | snex | ⊢ { 〈 𝐴 , ∅ 〉 } ∈ V | |
| 3 | f1oeq1 | ⊢ ( 𝑓 = { 〈 𝐴 , ∅ 〉 } → ( 𝑓 : { 𝐴 } –1-1-onto→ { ∅ } ↔ { 〈 𝐴 , ∅ 〉 } : { 𝐴 } –1-1-onto→ { ∅ } ) ) | |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | 1 4 | f1osn | ⊢ { 〈 𝐴 , ∅ 〉 } : { 𝐴 } –1-1-onto→ { ∅ } |
| 6 | 2 3 5 | ceqsexv2d | ⊢ ∃ 𝑓 𝑓 : { 𝐴 } –1-1-onto→ { ∅ } |
| 7 | snex | ⊢ { 𝐴 } ∈ V | |
| 8 | snex | ⊢ { ∅ } ∈ V | |
| 9 | breng | ⊢ ( ( { 𝐴 } ∈ V ∧ { ∅ } ∈ V ) → ( { 𝐴 } ≈ { ∅ } ↔ ∃ 𝑓 𝑓 : { 𝐴 } –1-1-onto→ { ∅ } ) ) | |
| 10 | 7 8 9 | mp2an | ⊢ ( { 𝐴 } ≈ { ∅ } ↔ ∃ 𝑓 𝑓 : { 𝐴 } –1-1-onto→ { ∅ } ) |
| 11 | 6 10 | mpbir | ⊢ { 𝐴 } ≈ { ∅ } |
| 12 | df1o2 | ⊢ 1o = { ∅ } | |
| 13 | 11 12 | breqtrri | ⊢ { 𝐴 } ≈ 1o |