This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of elements of an infinite Cartesian product creates a surjection, if the original Cartesian product is nonempty. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resixpfo.1 | ⊢ 𝐹 = ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ↦ ( 𝑓 ↾ 𝐵 ) ) | |
| Assertion | resixpfo | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ X 𝑥 ∈ 𝐴 𝐶 ≠ ∅ ) → 𝐹 : X 𝑥 ∈ 𝐴 𝐶 –onto→ X 𝑥 ∈ 𝐵 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resixpfo.1 | ⊢ 𝐹 = ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ↦ ( 𝑓 ↾ 𝐵 ) ) | |
| 2 | resixp | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝑓 ↾ 𝐵 ) ∈ X 𝑥 ∈ 𝐵 𝐶 ) | |
| 3 | 2 1 | fmptd | ⊢ ( 𝐵 ⊆ 𝐴 → 𝐹 : X 𝑥 ∈ 𝐴 𝐶 ⟶ X 𝑥 ∈ 𝐵 𝐶 ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ X 𝑥 ∈ 𝐴 𝐶 ≠ ∅ ) → 𝐹 : X 𝑥 ∈ 𝐴 𝐶 ⟶ X 𝑥 ∈ 𝐵 𝐶 ) |
| 5 | n0 | ⊢ ( X 𝑥 ∈ 𝐴 𝐶 ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) | |
| 6 | eleq1w | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 7 | 6 | ifbid | ⊢ ( 𝑧 = 𝑥 → if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) = if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ) |
| 8 | id | ⊢ ( 𝑧 = 𝑥 → 𝑧 = 𝑥 ) | |
| 9 | 7 8 | fveq12d | ⊢ ( 𝑧 = 𝑥 → ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) = ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ) |
| 10 | 9 | cbvmptv | ⊢ ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ) |
| 11 | vex | ⊢ ℎ ∈ V | |
| 12 | 11 | elixp | ⊢ ( ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ↔ ( ℎ Fn 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 13 | 12 | simprbi | ⊢ ( ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 → ∀ 𝑥 ∈ 𝐵 ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) |
| 14 | fveq1 | ⊢ ( ℎ = if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) → ( ℎ ‘ 𝑥 ) = ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ) | |
| 15 | 14 | eleq1d | ⊢ ( ℎ = if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) → ( ( ℎ ‘ 𝑥 ) ∈ 𝐶 ↔ ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 16 | fveq1 | ⊢ ( 𝑔 = if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) → ( 𝑔 ‘ 𝑥 ) = ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ) | |
| 17 | 16 | eleq1d | ⊢ ( 𝑔 = if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ↔ ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 18 | simpl | ⊢ ( ( ( 𝑥 ∈ 𝐵 → ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ) ) → ( 𝑥 ∈ 𝐵 → ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 19 | 18 | imp | ⊢ ( ( ( ( 𝑥 ∈ 𝐵 → ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) |
| 20 | simplrr | ⊢ ( ( ( ( 𝑥 ∈ 𝐵 → ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ) ) ∧ ¬ 𝑥 ∈ 𝐵 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ) | |
| 21 | 15 17 19 20 | ifbothda | ⊢ ( ( ( 𝑥 ∈ 𝐵 → ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ) ) → ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 22 | 21 | exp32 | ⊢ ( ( 𝑥 ∈ 𝐵 → ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 → ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
| 23 | 22 | ralimi2 | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( ℎ ‘ 𝑥 ) ∈ 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 → ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 24 | 13 23 | syl | ⊢ ( ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 → ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 → ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 26 | ralim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 → ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 → ∀ 𝑥 ∈ 𝐴 ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 → ∀ 𝑥 ∈ 𝐴 ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 28 | vex | ⊢ 𝑔 ∈ V | |
| 29 | 28 | elixp | ⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ↔ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 30 | 29 | simprbi | ⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ) |
| 31 | 27 30 | impel | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 32 | n0i | ⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 → ¬ X 𝑥 ∈ 𝐴 𝐶 = ∅ ) | |
| 33 | ixpprc | ⊢ ( ¬ 𝐴 ∈ V → X 𝑥 ∈ 𝐴 𝐶 = ∅ ) | |
| 34 | 32 33 | nsyl2 | ⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 → 𝐴 ∈ V ) |
| 35 | 34 | adantl | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → 𝐴 ∈ V ) |
| 36 | mptelixpg | ⊢ ( 𝐴 ∈ V → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ) ∈ X 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 37 | 35 36 | syl | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ) ∈ X 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 38 | 31 37 | mpbird | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝑥 ∈ 𝐴 ↦ ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ) ∈ X 𝑥 ∈ 𝐴 𝐶 ) |
| 39 | 10 38 | eqeltrid | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ∈ X 𝑥 ∈ 𝐴 𝐶 ) |
| 40 | reseq1 | ⊢ ( 𝑓 = ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) → ( 𝑓 ↾ 𝐵 ) = ( ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ↾ 𝐵 ) ) | |
| 41 | iftrue | ⊢ ( 𝑧 ∈ 𝐵 → if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) = ℎ ) | |
| 42 | 41 | fveq1d | ⊢ ( 𝑧 ∈ 𝐵 → ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) = ( ℎ ‘ 𝑧 ) ) |
| 43 | 42 | mpteq2ia | ⊢ ( 𝑧 ∈ 𝐵 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝐵 ↦ ( ℎ ‘ 𝑧 ) ) |
| 44 | resmpt | ⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ↾ 𝐵 ) = ( 𝑧 ∈ 𝐵 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ) | |
| 45 | 44 | ad2antrr | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ↾ 𝐵 ) = ( 𝑧 ∈ 𝐵 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ) |
| 46 | ixpfn | ⊢ ( ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 → ℎ Fn 𝐵 ) | |
| 47 | 46 | ad2antlr | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ℎ Fn 𝐵 ) |
| 48 | dffn5 | ⊢ ( ℎ Fn 𝐵 ↔ ℎ = ( 𝑧 ∈ 𝐵 ↦ ( ℎ ‘ 𝑧 ) ) ) | |
| 49 | 47 48 | sylib | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ℎ = ( 𝑧 ∈ 𝐵 ↦ ( ℎ ‘ 𝑧 ) ) ) |
| 50 | 43 45 49 | 3eqtr4a | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ↾ 𝐵 ) = ℎ ) |
| 51 | 50 11 | eqeltrdi | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ↾ 𝐵 ) ∈ V ) |
| 52 | 1 40 39 51 | fvmptd3 | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝐹 ‘ ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ) = ( ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ↾ 𝐵 ) ) |
| 53 | 52 50 | eqtr2d | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ℎ = ( 𝐹 ‘ ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ) ) |
| 54 | fveq2 | ⊢ ( 𝑦 = ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ) ) | |
| 55 | 54 | rspceeqv | ⊢ ( ( ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ∈ X 𝑥 ∈ 𝐴 𝐶 ∧ ℎ = ( 𝐹 ‘ ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ) ) → ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) |
| 56 | 39 53 55 | syl2anc | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) |
| 57 | 56 | ex | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) → ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 → ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) ) |
| 58 | 57 | ralrimdva | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 → ∀ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) ) |
| 59 | 58 | exlimdv | ⊢ ( 𝐵 ⊆ 𝐴 → ( ∃ 𝑔 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 → ∀ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) ) |
| 60 | 5 59 | biimtrid | ⊢ ( 𝐵 ⊆ 𝐴 → ( X 𝑥 ∈ 𝐴 𝐶 ≠ ∅ → ∀ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) ) |
| 61 | 60 | imp | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ X 𝑥 ∈ 𝐴 𝐶 ≠ ∅ ) → ∀ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) |
| 62 | dffo3 | ⊢ ( 𝐹 : X 𝑥 ∈ 𝐴 𝐶 –onto→ X 𝑥 ∈ 𝐵 𝐶 ↔ ( 𝐹 : X 𝑥 ∈ 𝐴 𝐶 ⟶ X 𝑥 ∈ 𝐵 𝐶 ∧ ∀ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) ) | |
| 63 | 4 61 62 | sylanbrc | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ X 𝑥 ∈ 𝐴 𝐶 ≠ ∅ ) → 𝐹 : X 𝑥 ∈ 𝐴 𝐶 –onto→ X 𝑥 ∈ 𝐵 𝐶 ) |