This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for the ring of power series (left-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| psrass.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psrass.t | ⊢ × = ( .r ‘ 𝑆 ) | ||
| psrass.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrass.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| psrass.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| psrass.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| psrdi.a | ⊢ + = ( +g ‘ 𝑆 ) | ||
| Assertion | psrdi | ⊢ ( 𝜑 → ( 𝑋 × ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 × 𝑌 ) + ( 𝑋 × 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | psrass.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | psrass.t | ⊢ × = ( .r ‘ 𝑆 ) | |
| 6 | psrass.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 7 | psrass.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | psrass.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | psrass.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 10 | psrdi.a | ⊢ + = ( +g ‘ 𝑆 ) | |
| 11 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 12 | 1 6 11 10 8 9 | psradd | ⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) = ( 𝑌 ∘f ( +g ‘ 𝑅 ) 𝑍 ) ) |
| 13 | 12 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑌 + 𝑍 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) = ( ( 𝑌 ∘f ( +g ‘ 𝑅 ) 𝑍 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) |
| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑌 + 𝑍 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) = ( ( 𝑌 ∘f ( +g ‘ 𝑅 ) 𝑍 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) |
| 15 | ssrab2 | ⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ⊆ 𝐷 | |
| 16 | eqid | ⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } | |
| 17 | 4 16 | psrbagconcl | ⊢ ( ( 𝑘 ∈ 𝐷 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 18 | 17 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 19 | 15 18 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 ) |
| 20 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 21 | 1 20 4 6 8 | psrelbas | ⊢ ( 𝜑 → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 23 | 22 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑌 Fn 𝐷 ) |
| 24 | 1 20 4 6 9 | psrelbas | ⊢ ( 𝜑 → 𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 26 | 25 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑍 Fn 𝐷 ) |
| 27 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 28 | 4 27 | rabex2 | ⊢ 𝐷 ∈ V |
| 29 | 28 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝐷 ∈ V ) |
| 30 | inidm | ⊢ ( 𝐷 ∩ 𝐷 ) = 𝐷 | |
| 31 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) | |
| 32 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 ) → ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) = ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) | |
| 33 | 23 26 29 29 30 31 32 | ofval | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 ) → ( ( 𝑌 ∘f ( +g ‘ 𝑅 ) 𝑍 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) = ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) |
| 34 | 19 33 | mpdan | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑌 ∘f ( +g ‘ 𝑅 ) 𝑍 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) = ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) |
| 35 | 14 34 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑌 + 𝑍 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) = ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) |
| 36 | 35 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑌 + 𝑍 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
| 37 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑅 ∈ Ring ) |
| 38 | 1 20 4 6 7 | psrelbas | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 40 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) | |
| 41 | 15 40 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 ∈ 𝐷 ) |
| 42 | 39 41 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 43 | 22 19 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 44 | 25 19 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 45 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 46 | 20 11 45 | ringdi | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
| 47 | 37 42 43 44 46 | syl13anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
| 48 | 36 47 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑌 + 𝑍 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
| 49 | 48 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑌 + 𝑍 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
| 50 | 4 | psrbaglefi | ⊢ ( 𝑘 ∈ 𝐷 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
| 51 | 50 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
| 52 | 20 45 37 42 43 | ringcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 53 | 20 45 37 42 44 | ringcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 54 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) | |
| 55 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) | |
| 56 | 51 52 53 54 55 | offval2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
| 57 | 49 56 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑌 + 𝑍 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
| 58 | 57 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑌 + 𝑍 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 59 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
| 60 | 59 | ringcmnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 ∈ CMnd ) |
| 61 | eqid | ⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) | |
| 62 | eqid | ⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) | |
| 63 | 20 11 60 51 52 53 61 62 | gsummptfidmadd2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 64 | 58 63 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑌 + 𝑍 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 65 | 64 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑌 + 𝑍 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) = ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) ) |
| 66 | 3 | ringgrpd | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 67 | 66 | grpmgmd | ⊢ ( 𝜑 → 𝑅 ∈ Mgm ) |
| 68 | 1 6 10 67 8 9 | psraddcl | ⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ∈ 𝐵 ) |
| 69 | 1 6 45 5 4 7 68 | psrmulfval | ⊢ ( 𝜑 → ( 𝑋 × ( 𝑌 + 𝑍 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑌 + 𝑍 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 70 | 1 6 5 3 7 8 | psrmulcl | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 71 | 1 6 5 3 7 9 | psrmulcl | ⊢ ( 𝜑 → ( 𝑋 × 𝑍 ) ∈ 𝐵 ) |
| 72 | 1 6 11 10 70 71 | psradd | ⊢ ( 𝜑 → ( ( 𝑋 × 𝑌 ) + ( 𝑋 × 𝑍 ) ) = ( ( 𝑋 × 𝑌 ) ∘f ( +g ‘ 𝑅 ) ( 𝑋 × 𝑍 ) ) ) |
| 73 | 28 | a1i | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 74 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ∈ V ) | |
| 75 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ∈ V ) | |
| 76 | 1 6 45 5 4 7 8 | psrmulfval | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 77 | 1 6 45 5 4 7 9 | psrmulfval | ⊢ ( 𝜑 → ( 𝑋 × 𝑍 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 78 | 73 74 75 76 77 | offval2 | ⊢ ( 𝜑 → ( ( 𝑋 × 𝑌 ) ∘f ( +g ‘ 𝑅 ) ( 𝑋 × 𝑍 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) ) |
| 79 | 72 78 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑋 × 𝑌 ) + ( 𝑋 × 𝑍 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) ) |
| 80 | 65 69 79 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑋 × ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 × 𝑌 ) + ( 𝑋 × 𝑍 ) ) ) |