This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subg0.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| subginv.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| subginv.j | ⊢ 𝐽 = ( invg ‘ 𝐻 ) | ||
| Assertion | subginv | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝐼 ‘ 𝑋 ) = ( 𝐽 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subg0.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 2 | subginv.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 3 | subginv.j | ⊢ 𝐽 = ( invg ‘ 𝐻 ) | |
| 4 | 1 | subggrp | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 5 | 1 | subgbas | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 6 | 5 | eleq2d | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑋 ∈ 𝑆 ↔ 𝑋 ∈ ( Base ‘ 𝐻 ) ) ) |
| 7 | 6 | biimpa | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
| 8 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 9 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 10 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 11 | 8 9 10 3 | grprinv | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑋 ( +g ‘ 𝐻 ) ( 𝐽 ‘ 𝑋 ) ) = ( 0g ‘ 𝐻 ) ) |
| 12 | 4 7 11 | syl2an2r | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ( +g ‘ 𝐻 ) ( 𝐽 ‘ 𝑋 ) ) = ( 0g ‘ 𝐻 ) ) |
| 13 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 14 | 1 13 | ressplusg | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 16 | 15 | oveqd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐽 ‘ 𝑋 ) ) = ( 𝑋 ( +g ‘ 𝐻 ) ( 𝐽 ‘ 𝑋 ) ) ) |
| 17 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 18 | 1 17 | subg0 | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 20 | 12 16 19 | 3eqtr4d | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐽 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 21 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 23 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 24 | 23 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 25 | 24 | sselda | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 26 | 8 3 | grpinvcl | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝐻 ) ) → ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) |
| 27 | 26 | ex | ⊢ ( 𝐻 ∈ Grp → ( 𝑋 ∈ ( Base ‘ 𝐻 ) → ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) ) |
| 28 | 4 27 | syl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑋 ∈ ( Base ‘ 𝐻 ) → ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) ) |
| 29 | 5 | eleq2d | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝐽 ‘ 𝑋 ) ∈ 𝑆 ↔ ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) ) |
| 30 | 28 6 29 | 3imtr4d | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑋 ∈ 𝑆 → ( 𝐽 ‘ 𝑋 ) ∈ 𝑆 ) ) |
| 31 | 30 | imp | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝐽 ‘ 𝑋 ) ∈ 𝑆 ) |
| 32 | 24 | sselda | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐽 ‘ 𝑋 ) ∈ 𝑆 ) → ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝐺 ) ) |
| 33 | 31 32 | syldan | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝐺 ) ) |
| 34 | 23 13 17 2 | grpinvid1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐼 ‘ 𝑋 ) = ( 𝐽 ‘ 𝑋 ) ↔ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐽 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 35 | 22 25 33 34 | syl3anc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( ( 𝐼 ‘ 𝑋 ) = ( 𝐽 ‘ 𝑋 ) ↔ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐽 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 36 | 20 35 | mpbird | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝐼 ‘ 𝑋 ) = ( 𝐽 ‘ 𝑋 ) ) |