This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011) (Revised by Mario Carneiro, 25-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invrfval.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| invrfval.g | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | ||
| invrfval.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| Assertion | invrfval | ⊢ 𝐼 = ( invg ‘ 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrfval.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | invrfval.g | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | |
| 3 | invrfval.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 4 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) | |
| 5 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = ( Unit ‘ 𝑅 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = 𝑈 ) |
| 7 | 4 6 | oveq12d | ⊢ ( 𝑟 = 𝑅 → ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 8 | 7 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) = 𝐺 ) |
| 9 | 8 | fveq2d | ⊢ ( 𝑟 = 𝑅 → ( invg ‘ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ) = ( invg ‘ 𝐺 ) ) |
| 10 | df-invr | ⊢ invr = ( 𝑟 ∈ V ↦ ( invg ‘ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ) ) | |
| 11 | fvex | ⊢ ( invg ‘ 𝐺 ) ∈ V | |
| 12 | 9 10 11 | fvmpt | ⊢ ( 𝑅 ∈ V → ( invr ‘ 𝑅 ) = ( invg ‘ 𝐺 ) ) |
| 13 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( invr ‘ 𝑅 ) = ∅ ) | |
| 14 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 15 | eqid | ⊢ ( invg ‘ ∅ ) = ( invg ‘ ∅ ) | |
| 16 | 14 15 | grpinvfn | ⊢ ( invg ‘ ∅ ) Fn ∅ |
| 17 | fn0 | ⊢ ( ( invg ‘ ∅ ) Fn ∅ ↔ ( invg ‘ ∅ ) = ∅ ) | |
| 18 | 16 17 | mpbi | ⊢ ( invg ‘ ∅ ) = ∅ |
| 19 | 13 18 | eqtr4di | ⊢ ( ¬ 𝑅 ∈ V → ( invr ‘ 𝑅 ) = ( invg ‘ ∅ ) ) |
| 20 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( mulGrp ‘ 𝑅 ) = ∅ ) | |
| 21 | 20 | oveq1d | ⊢ ( ¬ 𝑅 ∈ V → ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) = ( ∅ ↾s 𝑈 ) ) |
| 22 | 2 21 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → 𝐺 = ( ∅ ↾s 𝑈 ) ) |
| 23 | ress0 | ⊢ ( ∅ ↾s 𝑈 ) = ∅ | |
| 24 | 22 23 | eqtrdi | ⊢ ( ¬ 𝑅 ∈ V → 𝐺 = ∅ ) |
| 25 | 24 | fveq2d | ⊢ ( ¬ 𝑅 ∈ V → ( invg ‘ 𝐺 ) = ( invg ‘ ∅ ) ) |
| 26 | 19 25 | eqtr4d | ⊢ ( ¬ 𝑅 ∈ V → ( invr ‘ 𝑅 ) = ( invg ‘ 𝐺 ) ) |
| 27 | 12 26 | pm2.61i | ⊢ ( invr ‘ 𝑅 ) = ( invg ‘ 𝐺 ) |
| 28 | 3 27 | eqtri | ⊢ 𝐼 = ( invg ‘ 𝐺 ) |