This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnmsgnsubg.m | ⊢ 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) | |
| Assertion | cnmsgnsubg | ⊢ { 1 , - 1 } ∈ ( SubGrp ‘ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmsgnsubg.m | ⊢ 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) | |
| 2 | elpri | ⊢ ( 𝑥 ∈ { 1 , - 1 } → ( 𝑥 = 1 ∨ 𝑥 = - 1 ) ) | |
| 3 | id | ⊢ ( 𝑥 = 1 → 𝑥 = 1 ) | |
| 4 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 5 | 3 4 | eqeltrdi | ⊢ ( 𝑥 = 1 → 𝑥 ∈ ℂ ) |
| 6 | id | ⊢ ( 𝑥 = - 1 → 𝑥 = - 1 ) | |
| 7 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 8 | 6 7 | eqeltrdi | ⊢ ( 𝑥 = - 1 → 𝑥 ∈ ℂ ) |
| 9 | 5 8 | jaoi | ⊢ ( ( 𝑥 = 1 ∨ 𝑥 = - 1 ) → 𝑥 ∈ ℂ ) |
| 10 | 2 9 | syl | ⊢ ( 𝑥 ∈ { 1 , - 1 } → 𝑥 ∈ ℂ ) |
| 11 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 12 | 11 | a1i | ⊢ ( 𝑥 = 1 → 1 ≠ 0 ) |
| 13 | 3 12 | eqnetrd | ⊢ ( 𝑥 = 1 → 𝑥 ≠ 0 ) |
| 14 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 15 | 14 | a1i | ⊢ ( 𝑥 = - 1 → - 1 ≠ 0 ) |
| 16 | 6 15 | eqnetrd | ⊢ ( 𝑥 = - 1 → 𝑥 ≠ 0 ) |
| 17 | 13 16 | jaoi | ⊢ ( ( 𝑥 = 1 ∨ 𝑥 = - 1 ) → 𝑥 ≠ 0 ) |
| 18 | 2 17 | syl | ⊢ ( 𝑥 ∈ { 1 , - 1 } → 𝑥 ≠ 0 ) |
| 19 | elpri | ⊢ ( 𝑦 ∈ { 1 , - 1 } → ( 𝑦 = 1 ∨ 𝑦 = - 1 ) ) | |
| 20 | oveq12 | ⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) = ( 1 · 1 ) ) | |
| 21 | 4 | mulridi | ⊢ ( 1 · 1 ) = 1 |
| 22 | 1ex | ⊢ 1 ∈ V | |
| 23 | 22 | prid1 | ⊢ 1 ∈ { 1 , - 1 } |
| 24 | 21 23 | eqeltri | ⊢ ( 1 · 1 ) ∈ { 1 , - 1 } |
| 25 | 20 24 | eqeltrdi | ⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
| 26 | oveq12 | ⊢ ( ( 𝑥 = - 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) = ( - 1 · 1 ) ) | |
| 27 | 7 | mulridi | ⊢ ( - 1 · 1 ) = - 1 |
| 28 | negex | ⊢ - 1 ∈ V | |
| 29 | 28 | prid2 | ⊢ - 1 ∈ { 1 , - 1 } |
| 30 | 27 29 | eqeltri | ⊢ ( - 1 · 1 ) ∈ { 1 , - 1 } |
| 31 | 26 30 | eqeltrdi | ⊢ ( ( 𝑥 = - 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
| 32 | oveq12 | ⊢ ( ( 𝑥 = 1 ∧ 𝑦 = - 1 ) → ( 𝑥 · 𝑦 ) = ( 1 · - 1 ) ) | |
| 33 | 7 | mullidi | ⊢ ( 1 · - 1 ) = - 1 |
| 34 | 33 29 | eqeltri | ⊢ ( 1 · - 1 ) ∈ { 1 , - 1 } |
| 35 | 32 34 | eqeltrdi | ⊢ ( ( 𝑥 = 1 ∧ 𝑦 = - 1 ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
| 36 | oveq12 | ⊢ ( ( 𝑥 = - 1 ∧ 𝑦 = - 1 ) → ( 𝑥 · 𝑦 ) = ( - 1 · - 1 ) ) | |
| 37 | neg1mulneg1e1 | ⊢ ( - 1 · - 1 ) = 1 | |
| 38 | 37 23 | eqeltri | ⊢ ( - 1 · - 1 ) ∈ { 1 , - 1 } |
| 39 | 36 38 | eqeltrdi | ⊢ ( ( 𝑥 = - 1 ∧ 𝑦 = - 1 ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
| 40 | 25 31 35 39 | ccase | ⊢ ( ( ( 𝑥 = 1 ∨ 𝑥 = - 1 ) ∧ ( 𝑦 = 1 ∨ 𝑦 = - 1 ) ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
| 41 | 2 19 40 | syl2an | ⊢ ( ( 𝑥 ∈ { 1 , - 1 } ∧ 𝑦 ∈ { 1 , - 1 } ) → ( 𝑥 · 𝑦 ) ∈ { 1 , - 1 } ) |
| 42 | oveq2 | ⊢ ( 𝑥 = 1 → ( 1 / 𝑥 ) = ( 1 / 1 ) ) | |
| 43 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 44 | 43 23 | eqeltri | ⊢ ( 1 / 1 ) ∈ { 1 , - 1 } |
| 45 | 42 44 | eqeltrdi | ⊢ ( 𝑥 = 1 → ( 1 / 𝑥 ) ∈ { 1 , - 1 } ) |
| 46 | oveq2 | ⊢ ( 𝑥 = - 1 → ( 1 / 𝑥 ) = ( 1 / - 1 ) ) | |
| 47 | divneg2 | ⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → - ( 1 / 1 ) = ( 1 / - 1 ) ) | |
| 48 | 4 4 11 47 | mp3an | ⊢ - ( 1 / 1 ) = ( 1 / - 1 ) |
| 49 | 43 | negeqi | ⊢ - ( 1 / 1 ) = - 1 |
| 50 | 48 49 | eqtr3i | ⊢ ( 1 / - 1 ) = - 1 |
| 51 | 50 29 | eqeltri | ⊢ ( 1 / - 1 ) ∈ { 1 , - 1 } |
| 52 | 46 51 | eqeltrdi | ⊢ ( 𝑥 = - 1 → ( 1 / 𝑥 ) ∈ { 1 , - 1 } ) |
| 53 | 45 52 | jaoi | ⊢ ( ( 𝑥 = 1 ∨ 𝑥 = - 1 ) → ( 1 / 𝑥 ) ∈ { 1 , - 1 } ) |
| 54 | 2 53 | syl | ⊢ ( 𝑥 ∈ { 1 , - 1 } → ( 1 / 𝑥 ) ∈ { 1 , - 1 } ) |
| 55 | 1 10 18 41 23 54 | cnmsubglem | ⊢ { 1 , - 1 } ∈ ( SubGrp ‘ 𝑀 ) |