This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgninv.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| psgninv.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| psgninv.p | ⊢ 𝑃 = ( Base ‘ 𝑆 ) | ||
| Assertion | psgnco | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝑁 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑁 ‘ 𝐹 ) · ( 𝑁 ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgninv.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgninv.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 3 | psgninv.p | ⊢ 𝑃 = ( Base ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 5 | 1 3 4 | symgov | ⊢ ( ( 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝐺 ) = ( 𝐹 ∘ 𝐺 ) ) |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝐺 ) = ( 𝐹 ∘ 𝐺 ) ) |
| 7 | 6 | fveq2d | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝑁 ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝐺 ) ) = ( 𝑁 ‘ ( 𝐹 ∘ 𝐺 ) ) ) |
| 8 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| 9 | 1 2 8 | psgnghm2 | ⊢ ( 𝐷 ∈ Fin → 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 10 | prex | ⊢ { 1 , - 1 } ∈ V | |
| 11 | eqid | ⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) | |
| 12 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 13 | 11 12 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 14 | 8 13 | ressplusg | ⊢ ( { 1 , - 1 } ∈ V → · = ( +g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 15 | 10 14 | ax-mp | ⊢ · = ( +g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
| 16 | 3 4 15 | ghmlin | ⊢ ( ( 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝑁 ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝐺 ) ) = ( ( 𝑁 ‘ 𝐹 ) · ( 𝑁 ‘ 𝐺 ) ) ) |
| 17 | 9 16 | syl3an1 | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝑁 ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝐺 ) ) = ( ( 𝑁 ‘ 𝐹 ) · ( 𝑁 ‘ 𝐺 ) ) ) |
| 18 | 7 17 | eqtr3d | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝑁 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑁 ‘ 𝐹 ) · ( 𝑁 ‘ 𝐺 ) ) ) |