This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate the primorial (product of the first n primes) to the Chebyshev function. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prmorcht.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) | |
| Assertion | prmorcht | ⊢ ( 𝐴 ∈ ℕ → ( exp ‘ ( θ ‘ 𝐴 ) ) = ( seq 1 ( · , 𝐹 ) ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmorcht.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) | |
| 2 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
| 3 | chtval | ⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) = Σ 𝑘 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑘 ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ∈ ℕ → ( θ ‘ 𝐴 ) = Σ 𝑘 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑘 ) ) |
| 5 | 2eluzge1 | ⊢ 2 ∈ ( ℤ≥ ‘ 1 ) | |
| 6 | ppisval2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) | |
| 7 | 2 5 6 | sylancl | ⊢ ( 𝐴 ∈ ℕ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 8 | nnz | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) | |
| 9 | flid | ⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐴 ∈ ℕ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
| 11 | 10 | oveq2d | ⊢ ( 𝐴 ∈ ℕ → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ( 1 ... 𝐴 ) ) |
| 12 | 11 | ineq1d | ⊢ ( 𝐴 ∈ ℕ → ( ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 1 ... 𝐴 ) ∩ ℙ ) ) |
| 13 | 7 12 | eqtrd | ⊢ ( 𝐴 ∈ ℕ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 1 ... 𝐴 ) ∩ ℙ ) ) |
| 14 | 13 | sumeq1d | ⊢ ( 𝐴 ∈ ℕ → Σ 𝑘 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑘 ) = Σ 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( log ‘ 𝑘 ) ) |
| 15 | inss1 | ⊢ ( ( 1 ... 𝐴 ) ∩ ℙ ) ⊆ ( 1 ... 𝐴 ) | |
| 16 | elinel1 | ⊢ ( 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) → 𝑘 ∈ ( 1 ... 𝐴 ) ) | |
| 17 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... 𝐴 ) → 𝑘 ∈ ℕ ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → 𝑘 ∈ ℕ ) |
| 19 | 18 | nnrpd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → 𝑘 ∈ ℝ+ ) |
| 20 | 19 | relogcld | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → ( log ‘ 𝑘 ) ∈ ℝ ) |
| 21 | 20 | recnd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → ( log ‘ 𝑘 ) ∈ ℂ ) |
| 22 | 16 21 | sylan2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑘 ) ∈ ℂ ) |
| 23 | 22 | ralrimiva | ⊢ ( 𝐴 ∈ ℕ → ∀ 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( log ‘ 𝑘 ) ∈ ℂ ) |
| 24 | fzfi | ⊢ ( 1 ... 𝐴 ) ∈ Fin | |
| 25 | 24 | olci | ⊢ ( ( 1 ... 𝐴 ) ⊆ ( ℤ≥ ‘ 1 ) ∨ ( 1 ... 𝐴 ) ∈ Fin ) |
| 26 | sumss2 | ⊢ ( ( ( ( ( 1 ... 𝐴 ) ∩ ℙ ) ⊆ ( 1 ... 𝐴 ) ∧ ∀ 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( log ‘ 𝑘 ) ∈ ℂ ) ∧ ( ( 1 ... 𝐴 ) ⊆ ( ℤ≥ ‘ 1 ) ∨ ( 1 ... 𝐴 ) ∈ Fin ) ) → Σ 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( log ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... 𝐴 ) if ( 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) , ( log ‘ 𝑘 ) , 0 ) ) | |
| 27 | 25 26 | mpan2 | ⊢ ( ( ( ( 1 ... 𝐴 ) ∩ ℙ ) ⊆ ( 1 ... 𝐴 ) ∧ ∀ 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( log ‘ 𝑘 ) ∈ ℂ ) → Σ 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( log ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... 𝐴 ) if ( 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) , ( log ‘ 𝑘 ) , 0 ) ) |
| 28 | 15 23 27 | sylancr | ⊢ ( 𝐴 ∈ ℕ → Σ 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( log ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... 𝐴 ) if ( 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) , ( log ‘ 𝑘 ) , 0 ) ) |
| 29 | 14 28 | eqtrd | ⊢ ( 𝐴 ∈ ℕ → Σ 𝑘 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... 𝐴 ) if ( 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) , ( log ‘ 𝑘 ) , 0 ) ) |
| 30 | 4 29 | eqtrd | ⊢ ( 𝐴 ∈ ℕ → ( θ ‘ 𝐴 ) = Σ 𝑘 ∈ ( 1 ... 𝐴 ) if ( 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) , ( log ‘ 𝑘 ) , 0 ) ) |
| 31 | elin | ⊢ ( 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ↔ ( 𝑘 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ℙ ) ) | |
| 32 | 31 | baibr | ⊢ ( 𝑘 ∈ ( 1 ... 𝐴 ) → ( 𝑘 ∈ ℙ ↔ 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) ) |
| 33 | 32 | ifbid | ⊢ ( 𝑘 ∈ ( 1 ... 𝐴 ) → if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , 0 ) = if ( 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) , ( log ‘ 𝑘 ) , 0 ) ) |
| 34 | 33 | sumeq2i | ⊢ Σ 𝑘 ∈ ( 1 ... 𝐴 ) if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , 0 ) = Σ 𝑘 ∈ ( 1 ... 𝐴 ) if ( 𝑘 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) , ( log ‘ 𝑘 ) , 0 ) |
| 35 | 30 34 | eqtr4di | ⊢ ( 𝐴 ∈ ℕ → ( θ ‘ 𝐴 ) = Σ 𝑘 ∈ ( 1 ... 𝐴 ) if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , 0 ) ) |
| 36 | eleq1w | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ ) ) | |
| 37 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( log ‘ 𝑛 ) = ( log ‘ 𝑘 ) ) | |
| 38 | 36 37 | ifbieq1d | ⊢ ( 𝑛 = 𝑘 → if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) = if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , 0 ) ) |
| 39 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) | |
| 40 | fvex | ⊢ ( log ‘ 𝑘 ) ∈ V | |
| 41 | 0cn | ⊢ 0 ∈ ℂ | |
| 42 | 41 | elexi | ⊢ 0 ∈ V |
| 43 | 40 42 | ifex | ⊢ if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , 0 ) ∈ V |
| 44 | 38 39 43 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , 0 ) ) |
| 45 | 18 44 | syl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , 0 ) ) |
| 46 | elnnuz | ⊢ ( 𝐴 ∈ ℕ ↔ 𝐴 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 47 | 46 | biimpi | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ( ℤ≥ ‘ 1 ) ) |
| 48 | ifcl | ⊢ ( ( ( log ‘ 𝑘 ) ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , 0 ) ∈ ℂ ) | |
| 49 | 21 41 48 | sylancl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , 0 ) ∈ ℂ ) |
| 50 | 45 47 49 | fsumser | ⊢ ( 𝐴 ∈ ℕ → Σ 𝑘 ∈ ( 1 ... 𝐴 ) if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , 0 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) ) ‘ 𝐴 ) ) |
| 51 | 35 50 | eqtrd | ⊢ ( 𝐴 ∈ ℕ → ( θ ‘ 𝐴 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) ) ‘ 𝐴 ) ) |
| 52 | 51 | fveq2d | ⊢ ( 𝐴 ∈ ℕ → ( exp ‘ ( θ ‘ 𝐴 ) ) = ( exp ‘ ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) ) ‘ 𝐴 ) ) ) |
| 53 | addcl | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ ) → ( 𝑘 + 𝑝 ) ∈ ℂ ) | |
| 54 | 53 | adantl | ⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ ) ) → ( 𝑘 + 𝑝 ) ∈ ℂ ) |
| 55 | 45 49 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 56 | efadd | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ ) → ( exp ‘ ( 𝑘 + 𝑝 ) ) = ( ( exp ‘ 𝑘 ) · ( exp ‘ 𝑝 ) ) ) | |
| 57 | 56 | adantl | ⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ ) ) → ( exp ‘ ( 𝑘 + 𝑝 ) ) = ( ( exp ‘ 𝑘 ) · ( exp ‘ 𝑝 ) ) ) |
| 58 | 1nn | ⊢ 1 ∈ ℕ | |
| 59 | ifcl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 1 ∈ ℕ ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℕ ) | |
| 60 | 18 58 59 | sylancl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℕ ) |
| 61 | 60 | nnrpd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℝ+ ) |
| 62 | 61 | reeflogd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → ( exp ‘ ( log ‘ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) ) = if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
| 63 | fvif | ⊢ ( log ‘ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) = if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , ( log ‘ 1 ) ) | |
| 64 | log1 | ⊢ ( log ‘ 1 ) = 0 | |
| 65 | ifeq2 | ⊢ ( ( log ‘ 1 ) = 0 → if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , ( log ‘ 1 ) ) = if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , 0 ) ) | |
| 66 | 64 65 | ax-mp | ⊢ if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , ( log ‘ 1 ) ) = if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , 0 ) |
| 67 | 63 66 | eqtri | ⊢ ( log ‘ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) = if ( 𝑘 ∈ ℙ , ( log ‘ 𝑘 ) , 0 ) |
| 68 | 45 67 | eqtr4di | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) ‘ 𝑘 ) = ( log ‘ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) ) |
| 69 | 68 | fveq2d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → ( exp ‘ ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) ‘ 𝑘 ) ) = ( exp ‘ ( log ‘ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) ) ) |
| 70 | id | ⊢ ( 𝑛 = 𝑘 → 𝑛 = 𝑘 ) | |
| 71 | 36 70 | ifbieq1d | ⊢ ( 𝑛 = 𝑘 → if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) = if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
| 72 | vex | ⊢ 𝑘 ∈ V | |
| 73 | 58 | elexi | ⊢ 1 ∈ V |
| 74 | 72 73 | ifex | ⊢ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ V |
| 75 | 71 1 74 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
| 76 | 18 75 | syl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
| 77 | 62 69 76 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → ( exp ‘ ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 78 | 54 55 47 57 77 | seqhomo | ⊢ ( 𝐴 ∈ ℕ → ( exp ‘ ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) ) ‘ 𝐴 ) ) = ( seq 1 ( · , 𝐹 ) ‘ 𝐴 ) ) |
| 79 | 52 78 | eqtrd | ⊢ ( 𝐴 ∈ ℕ → ( exp ‘ ( θ ‘ 𝐴 ) ) = ( seq 1 ( · , 𝐹 ) ‘ 𝐴 ) ) |