This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate the primorial (product of the first n primes) to the Chebyshev function. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prmorcht.1 | |- F = ( n e. NN |-> if ( n e. Prime , n , 1 ) ) |
|
| Assertion | prmorcht | |- ( A e. NN -> ( exp ` ( theta ` A ) ) = ( seq 1 ( x. , F ) ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmorcht.1 | |- F = ( n e. NN |-> if ( n e. Prime , n , 1 ) ) |
|
| 2 | nnre | |- ( A e. NN -> A e. RR ) |
|
| 3 | chtval | |- ( A e. RR -> ( theta ` A ) = sum_ k e. ( ( 0 [,] A ) i^i Prime ) ( log ` k ) ) |
|
| 4 | 2 3 | syl | |- ( A e. NN -> ( theta ` A ) = sum_ k e. ( ( 0 [,] A ) i^i Prime ) ( log ` k ) ) |
| 5 | 2eluzge1 | |- 2 e. ( ZZ>= ` 1 ) |
|
| 6 | ppisval2 | |- ( ( A e. RR /\ 2 e. ( ZZ>= ` 1 ) ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( 1 ... ( |_ ` A ) ) i^i Prime ) ) |
|
| 7 | 2 5 6 | sylancl | |- ( A e. NN -> ( ( 0 [,] A ) i^i Prime ) = ( ( 1 ... ( |_ ` A ) ) i^i Prime ) ) |
| 8 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 9 | flid | |- ( A e. ZZ -> ( |_ ` A ) = A ) |
|
| 10 | 8 9 | syl | |- ( A e. NN -> ( |_ ` A ) = A ) |
| 11 | 10 | oveq2d | |- ( A e. NN -> ( 1 ... ( |_ ` A ) ) = ( 1 ... A ) ) |
| 12 | 11 | ineq1d | |- ( A e. NN -> ( ( 1 ... ( |_ ` A ) ) i^i Prime ) = ( ( 1 ... A ) i^i Prime ) ) |
| 13 | 7 12 | eqtrd | |- ( A e. NN -> ( ( 0 [,] A ) i^i Prime ) = ( ( 1 ... A ) i^i Prime ) ) |
| 14 | 13 | sumeq1d | |- ( A e. NN -> sum_ k e. ( ( 0 [,] A ) i^i Prime ) ( log ` k ) = sum_ k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) ) |
| 15 | inss1 | |- ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) |
|
| 16 | elinel1 | |- ( k e. ( ( 1 ... A ) i^i Prime ) -> k e. ( 1 ... A ) ) |
|
| 17 | elfznn | |- ( k e. ( 1 ... A ) -> k e. NN ) |
|
| 18 | 17 | adantl | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> k e. NN ) |
| 19 | 18 | nnrpd | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> k e. RR+ ) |
| 20 | 19 | relogcld | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( log ` k ) e. RR ) |
| 21 | 20 | recnd | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( log ` k ) e. CC ) |
| 22 | 16 21 | sylan2 | |- ( ( A e. NN /\ k e. ( ( 1 ... A ) i^i Prime ) ) -> ( log ` k ) e. CC ) |
| 23 | 22 | ralrimiva | |- ( A e. NN -> A. k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) e. CC ) |
| 24 | fzfi | |- ( 1 ... A ) e. Fin |
|
| 25 | 24 | olci | |- ( ( 1 ... A ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... A ) e. Fin ) |
| 26 | sumss2 | |- ( ( ( ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) /\ A. k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) e. CC ) /\ ( ( 1 ... A ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... A ) e. Fin ) ) -> sum_ k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) |
|
| 27 | 25 26 | mpan2 | |- ( ( ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) /\ A. k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) e. CC ) -> sum_ k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) |
| 28 | 15 23 27 | sylancr | |- ( A e. NN -> sum_ k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) |
| 29 | 14 28 | eqtrd | |- ( A e. NN -> sum_ k e. ( ( 0 [,] A ) i^i Prime ) ( log ` k ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) |
| 30 | 4 29 | eqtrd | |- ( A e. NN -> ( theta ` A ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) |
| 31 | elin | |- ( k e. ( ( 1 ... A ) i^i Prime ) <-> ( k e. ( 1 ... A ) /\ k e. Prime ) ) |
|
| 32 | 31 | baibr | |- ( k e. ( 1 ... A ) -> ( k e. Prime <-> k e. ( ( 1 ... A ) i^i Prime ) ) ) |
| 33 | 32 | ifbid | |- ( k e. ( 1 ... A ) -> if ( k e. Prime , ( log ` k ) , 0 ) = if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) |
| 34 | 33 | sumeq2i | |- sum_ k e. ( 1 ... A ) if ( k e. Prime , ( log ` k ) , 0 ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) |
| 35 | 30 34 | eqtr4di | |- ( A e. NN -> ( theta ` A ) = sum_ k e. ( 1 ... A ) if ( k e. Prime , ( log ` k ) , 0 ) ) |
| 36 | eleq1w | |- ( n = k -> ( n e. Prime <-> k e. Prime ) ) |
|
| 37 | fveq2 | |- ( n = k -> ( log ` n ) = ( log ` k ) ) |
|
| 38 | 36 37 | ifbieq1d | |- ( n = k -> if ( n e. Prime , ( log ` n ) , 0 ) = if ( k e. Prime , ( log ` k ) , 0 ) ) |
| 39 | eqid | |- ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) = ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) |
|
| 40 | fvex | |- ( log ` k ) e. _V |
|
| 41 | 0cn | |- 0 e. CC |
|
| 42 | 41 | elexi | |- 0 e. _V |
| 43 | 40 42 | ifex | |- if ( k e. Prime , ( log ` k ) , 0 ) e. _V |
| 44 | 38 39 43 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) = if ( k e. Prime , ( log ` k ) , 0 ) ) |
| 45 | 18 44 | syl | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) = if ( k e. Prime , ( log ` k ) , 0 ) ) |
| 46 | elnnuz | |- ( A e. NN <-> A e. ( ZZ>= ` 1 ) ) |
|
| 47 | 46 | biimpi | |- ( A e. NN -> A e. ( ZZ>= ` 1 ) ) |
| 48 | ifcl | |- ( ( ( log ` k ) e. CC /\ 0 e. CC ) -> if ( k e. Prime , ( log ` k ) , 0 ) e. CC ) |
|
| 49 | 21 41 48 | sylancl | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> if ( k e. Prime , ( log ` k ) , 0 ) e. CC ) |
| 50 | 45 47 49 | fsumser | |- ( A e. NN -> sum_ k e. ( 1 ... A ) if ( k e. Prime , ( log ` k ) , 0 ) = ( seq 1 ( + , ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ) ` A ) ) |
| 51 | 35 50 | eqtrd | |- ( A e. NN -> ( theta ` A ) = ( seq 1 ( + , ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ) ` A ) ) |
| 52 | 51 | fveq2d | |- ( A e. NN -> ( exp ` ( theta ` A ) ) = ( exp ` ( seq 1 ( + , ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ) ` A ) ) ) |
| 53 | addcl | |- ( ( k e. CC /\ p e. CC ) -> ( k + p ) e. CC ) |
|
| 54 | 53 | adantl | |- ( ( A e. NN /\ ( k e. CC /\ p e. CC ) ) -> ( k + p ) e. CC ) |
| 55 | 45 49 | eqeltrd | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) e. CC ) |
| 56 | efadd | |- ( ( k e. CC /\ p e. CC ) -> ( exp ` ( k + p ) ) = ( ( exp ` k ) x. ( exp ` p ) ) ) |
|
| 57 | 56 | adantl | |- ( ( A e. NN /\ ( k e. CC /\ p e. CC ) ) -> ( exp ` ( k + p ) ) = ( ( exp ` k ) x. ( exp ` p ) ) ) |
| 58 | 1nn | |- 1 e. NN |
|
| 59 | ifcl | |- ( ( k e. NN /\ 1 e. NN ) -> if ( k e. Prime , k , 1 ) e. NN ) |
|
| 60 | 18 58 59 | sylancl | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> if ( k e. Prime , k , 1 ) e. NN ) |
| 61 | 60 | nnrpd | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> if ( k e. Prime , k , 1 ) e. RR+ ) |
| 62 | 61 | reeflogd | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( exp ` ( log ` if ( k e. Prime , k , 1 ) ) ) = if ( k e. Prime , k , 1 ) ) |
| 63 | fvif | |- ( log ` if ( k e. Prime , k , 1 ) ) = if ( k e. Prime , ( log ` k ) , ( log ` 1 ) ) |
|
| 64 | log1 | |- ( log ` 1 ) = 0 |
|
| 65 | ifeq2 | |- ( ( log ` 1 ) = 0 -> if ( k e. Prime , ( log ` k ) , ( log ` 1 ) ) = if ( k e. Prime , ( log ` k ) , 0 ) ) |
|
| 66 | 64 65 | ax-mp | |- if ( k e. Prime , ( log ` k ) , ( log ` 1 ) ) = if ( k e. Prime , ( log ` k ) , 0 ) |
| 67 | 63 66 | eqtri | |- ( log ` if ( k e. Prime , k , 1 ) ) = if ( k e. Prime , ( log ` k ) , 0 ) |
| 68 | 45 67 | eqtr4di | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) = ( log ` if ( k e. Prime , k , 1 ) ) ) |
| 69 | 68 | fveq2d | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( exp ` ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) ) = ( exp ` ( log ` if ( k e. Prime , k , 1 ) ) ) ) |
| 70 | id | |- ( n = k -> n = k ) |
|
| 71 | 36 70 | ifbieq1d | |- ( n = k -> if ( n e. Prime , n , 1 ) = if ( k e. Prime , k , 1 ) ) |
| 72 | vex | |- k e. _V |
|
| 73 | 58 | elexi | |- 1 e. _V |
| 74 | 72 73 | ifex | |- if ( k e. Prime , k , 1 ) e. _V |
| 75 | 71 1 74 | fvmpt | |- ( k e. NN -> ( F ` k ) = if ( k e. Prime , k , 1 ) ) |
| 76 | 18 75 | syl | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( F ` k ) = if ( k e. Prime , k , 1 ) ) |
| 77 | 62 69 76 | 3eqtr4d | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( exp ` ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) ) = ( F ` k ) ) |
| 78 | 54 55 47 57 77 | seqhomo | |- ( A e. NN -> ( exp ` ( seq 1 ( + , ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ) ` A ) ) = ( seq 1 ( x. , F ) ` A ) ) |
| 79 | 52 78 | eqtrd | |- ( A e. NN -> ( exp ` ( theta ` A ) ) = ( seq 1 ( x. , F ) ` A ) ) |