This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mumul . A multiple of a non-squarefree number is non-squarefree. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mumullem1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmz | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 3 | zsqcl | ⊢ ( 𝑝 ∈ ℤ → ( 𝑝 ↑ 2 ) ∈ ℤ ) | |
| 4 | 2 3 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ 2 ) ∈ ℤ ) |
| 5 | nnz | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) | |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
| 7 | nnz | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) | |
| 8 | 7 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℤ ) |
| 9 | dvdsmultr1 | ⊢ ( ( ( 𝑝 ↑ 2 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑝 ↑ 2 ) ∥ 𝐴 → ( 𝑝 ↑ 2 ) ∥ ( 𝐴 · 𝐵 ) ) ) | |
| 10 | 4 6 8 9 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ↑ 2 ) ∥ 𝐴 → ( 𝑝 ↑ 2 ) ∥ ( 𝐴 · 𝐵 ) ) ) |
| 11 | 10 | reximdva | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ ( 𝐴 · 𝐵 ) ) ) |
| 12 | isnsqf | ⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( μ ‘ 𝐴 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 14 | nnmulcl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 · 𝐵 ) ∈ ℕ ) | |
| 15 | isnsqf | ⊢ ( ( 𝐴 · 𝐵 ) ∈ ℕ → ( ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ ( 𝐴 · 𝐵 ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ ( 𝐴 · 𝐵 ) ) ) |
| 17 | 11 13 16 | 3imtr4d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( μ ‘ 𝐴 ) = 0 → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ) ) |
| 18 | 17 | imp | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ) |