This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The irreducible elements of ZZ are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by AV, 10-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prmirred.i | ⊢ 𝐼 = ( Irred ‘ ℤring ) | |
| Assertion | prmirred | ⊢ ( 𝐴 ∈ 𝐼 ↔ ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) ∈ ℙ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmirred.i | ⊢ 𝐼 = ( Irred ‘ ℤring ) | |
| 2 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 3 | 1 2 | irredcl | ⊢ ( 𝐴 ∈ 𝐼 → 𝐴 ∈ ℤ ) |
| 4 | elnn0 | ⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) | |
| 5 | zringring | ⊢ ℤring ∈ Ring | |
| 6 | zring0 | ⊢ 0 = ( 0g ‘ ℤring ) | |
| 7 | 1 6 | irredn0 | ⊢ ( ( ℤring ∈ Ring ∧ 𝐴 ∈ 𝐼 ) → 𝐴 ≠ 0 ) |
| 8 | 5 7 | mpan | ⊢ ( 𝐴 ∈ 𝐼 → 𝐴 ≠ 0 ) |
| 9 | 8 | necon2bi | ⊢ ( 𝐴 = 0 → ¬ 𝐴 ∈ 𝐼 ) |
| 10 | 9 | pm2.21d | ⊢ ( 𝐴 = 0 → ( 𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ ) ) |
| 11 | 10 | jao1i | ⊢ ( ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) → ( 𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ ) ) |
| 12 | 4 11 | sylbi | ⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ ) ) |
| 13 | prmnn | ⊢ ( 𝐴 ∈ ℙ → 𝐴 ∈ ℕ ) | |
| 14 | 13 | a1i | ⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℙ → 𝐴 ∈ ℕ ) ) |
| 15 | 1 | prmirredlem | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ ) ) |
| 16 | 15 | a1i | ⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℕ → ( 𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ ) ) ) |
| 17 | 12 14 16 | pm5.21ndd | ⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ ) ) |
| 18 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 19 | nn0ge0 | ⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) | |
| 20 | 18 19 | absidd | ⊢ ( 𝐴 ∈ ℕ0 → ( abs ‘ 𝐴 ) = 𝐴 ) |
| 21 | 20 | eleq1d | ⊢ ( 𝐴 ∈ ℕ0 → ( ( abs ‘ 𝐴 ) ∈ ℙ ↔ 𝐴 ∈ ℙ ) ) |
| 22 | 17 21 | bitr4d | ⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ 𝐼 ↔ ( abs ‘ 𝐴 ) ∈ ℙ ) ) |
| 23 | 22 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( 𝐴 ∈ 𝐼 ↔ ( abs ‘ 𝐴 ) ∈ ℙ ) ) |
| 24 | 1 | prmirredlem | ⊢ ( - 𝐴 ∈ ℕ → ( - 𝐴 ∈ 𝐼 ↔ - 𝐴 ∈ ℙ ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → ( - 𝐴 ∈ 𝐼 ↔ - 𝐴 ∈ ℙ ) ) |
| 26 | eqid | ⊢ ( invg ‘ ℤring ) = ( invg ‘ ℤring ) | |
| 27 | 1 26 2 | irrednegb | ⊢ ( ( ℤring ∈ Ring ∧ 𝐴 ∈ ℤ ) → ( 𝐴 ∈ 𝐼 ↔ ( ( invg ‘ ℤring ) ‘ 𝐴 ) ∈ 𝐼 ) ) |
| 28 | 5 27 | mpan | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ∈ 𝐼 ↔ ( ( invg ‘ ℤring ) ‘ 𝐴 ) ∈ 𝐼 ) ) |
| 29 | zsubrg | ⊢ ℤ ∈ ( SubRing ‘ ℂfld ) | |
| 30 | subrgsubg | ⊢ ( ℤ ∈ ( SubRing ‘ ℂfld ) → ℤ ∈ ( SubGrp ‘ ℂfld ) ) | |
| 31 | 29 30 | ax-mp | ⊢ ℤ ∈ ( SubGrp ‘ ℂfld ) |
| 32 | df-zring | ⊢ ℤring = ( ℂfld ↾s ℤ ) | |
| 33 | eqid | ⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) | |
| 34 | 32 33 26 | subginv | ⊢ ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴 ∈ ℤ ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = ( ( invg ‘ ℤring ) ‘ 𝐴 ) ) |
| 35 | 31 34 | mpan | ⊢ ( 𝐴 ∈ ℤ → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = ( ( invg ‘ ℤring ) ‘ 𝐴 ) ) |
| 36 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 37 | cnfldneg | ⊢ ( 𝐴 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 ) | |
| 38 | 36 37 | syl | ⊢ ( 𝐴 ∈ ℤ → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 ) |
| 39 | 35 38 | eqtr3d | ⊢ ( 𝐴 ∈ ℤ → ( ( invg ‘ ℤring ) ‘ 𝐴 ) = - 𝐴 ) |
| 40 | 39 | eleq1d | ⊢ ( 𝐴 ∈ ℤ → ( ( ( invg ‘ ℤring ) ‘ 𝐴 ) ∈ 𝐼 ↔ - 𝐴 ∈ 𝐼 ) ) |
| 41 | 28 40 | bitrd | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ∈ 𝐼 ↔ - 𝐴 ∈ 𝐼 ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → ( 𝐴 ∈ 𝐼 ↔ - 𝐴 ∈ 𝐼 ) ) |
| 43 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 44 | 43 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 45 | nnnn0 | ⊢ ( - 𝐴 ∈ ℕ → - 𝐴 ∈ ℕ0 ) | |
| 46 | 45 | nn0ge0d | ⊢ ( - 𝐴 ∈ ℕ → 0 ≤ - 𝐴 ) |
| 47 | 46 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → 0 ≤ - 𝐴 ) |
| 48 | 44 | le0neg1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → ( 𝐴 ≤ 0 ↔ 0 ≤ - 𝐴 ) ) |
| 49 | 47 48 | mpbird | ⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → 𝐴 ≤ 0 ) |
| 50 | 44 49 | absnidd | ⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → ( abs ‘ 𝐴 ) = - 𝐴 ) |
| 51 | 50 | eleq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ∈ ℙ ↔ - 𝐴 ∈ ℙ ) ) |
| 52 | 25 42 51 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → ( 𝐴 ∈ 𝐼 ↔ ( abs ‘ 𝐴 ) ∈ ℙ ) ) |
| 53 | 52 | adantrl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → ( 𝐴 ∈ 𝐼 ↔ ( abs ‘ 𝐴 ) ∈ ℙ ) ) |
| 54 | elznn0nn | ⊢ ( 𝐴 ∈ ℤ ↔ ( 𝐴 ∈ ℕ0 ∨ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) ) | |
| 55 | 54 | biimpi | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ∈ ℕ0 ∨ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) ) |
| 56 | 23 53 55 | mpjaodan | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ∈ 𝐼 ↔ ( abs ‘ 𝐴 ) ∈ ℙ ) ) |
| 57 | 3 56 | biadanii | ⊢ ( 𝐴 ∈ 𝐼 ↔ ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) ∈ ℙ ) ) |