This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The irreducible elements of ZZ are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by AV, 10-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prmirred.i | |- I = ( Irred ` ZZring ) |
|
| Assertion | prmirred | |- ( A e. I <-> ( A e. ZZ /\ ( abs ` A ) e. Prime ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmirred.i | |- I = ( Irred ` ZZring ) |
|
| 2 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 3 | 1 2 | irredcl | |- ( A e. I -> A e. ZZ ) |
| 4 | elnn0 | |- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) |
|
| 5 | zringring | |- ZZring e. Ring |
|
| 6 | zring0 | |- 0 = ( 0g ` ZZring ) |
|
| 7 | 1 6 | irredn0 | |- ( ( ZZring e. Ring /\ A e. I ) -> A =/= 0 ) |
| 8 | 5 7 | mpan | |- ( A e. I -> A =/= 0 ) |
| 9 | 8 | necon2bi | |- ( A = 0 -> -. A e. I ) |
| 10 | 9 | pm2.21d | |- ( A = 0 -> ( A e. I -> A e. NN ) ) |
| 11 | 10 | jao1i | |- ( ( A e. NN \/ A = 0 ) -> ( A e. I -> A e. NN ) ) |
| 12 | 4 11 | sylbi | |- ( A e. NN0 -> ( A e. I -> A e. NN ) ) |
| 13 | prmnn | |- ( A e. Prime -> A e. NN ) |
|
| 14 | 13 | a1i | |- ( A e. NN0 -> ( A e. Prime -> A e. NN ) ) |
| 15 | 1 | prmirredlem | |- ( A e. NN -> ( A e. I <-> A e. Prime ) ) |
| 16 | 15 | a1i | |- ( A e. NN0 -> ( A e. NN -> ( A e. I <-> A e. Prime ) ) ) |
| 17 | 12 14 16 | pm5.21ndd | |- ( A e. NN0 -> ( A e. I <-> A e. Prime ) ) |
| 18 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 19 | nn0ge0 | |- ( A e. NN0 -> 0 <_ A ) |
|
| 20 | 18 19 | absidd | |- ( A e. NN0 -> ( abs ` A ) = A ) |
| 21 | 20 | eleq1d | |- ( A e. NN0 -> ( ( abs ` A ) e. Prime <-> A e. Prime ) ) |
| 22 | 17 21 | bitr4d | |- ( A e. NN0 -> ( A e. I <-> ( abs ` A ) e. Prime ) ) |
| 23 | 22 | adantl | |- ( ( A e. ZZ /\ A e. NN0 ) -> ( A e. I <-> ( abs ` A ) e. Prime ) ) |
| 24 | 1 | prmirredlem | |- ( -u A e. NN -> ( -u A e. I <-> -u A e. Prime ) ) |
| 25 | 24 | adantl | |- ( ( A e. ZZ /\ -u A e. NN ) -> ( -u A e. I <-> -u A e. Prime ) ) |
| 26 | eqid | |- ( invg ` ZZring ) = ( invg ` ZZring ) |
|
| 27 | 1 26 2 | irrednegb | |- ( ( ZZring e. Ring /\ A e. ZZ ) -> ( A e. I <-> ( ( invg ` ZZring ) ` A ) e. I ) ) |
| 28 | 5 27 | mpan | |- ( A e. ZZ -> ( A e. I <-> ( ( invg ` ZZring ) ` A ) e. I ) ) |
| 29 | zsubrg | |- ZZ e. ( SubRing ` CCfld ) |
|
| 30 | subrgsubg | |- ( ZZ e. ( SubRing ` CCfld ) -> ZZ e. ( SubGrp ` CCfld ) ) |
|
| 31 | 29 30 | ax-mp | |- ZZ e. ( SubGrp ` CCfld ) |
| 32 | df-zring | |- ZZring = ( CCfld |`s ZZ ) |
|
| 33 | eqid | |- ( invg ` CCfld ) = ( invg ` CCfld ) |
|
| 34 | 32 33 26 | subginv | |- ( ( ZZ e. ( SubGrp ` CCfld ) /\ A e. ZZ ) -> ( ( invg ` CCfld ) ` A ) = ( ( invg ` ZZring ) ` A ) ) |
| 35 | 31 34 | mpan | |- ( A e. ZZ -> ( ( invg ` CCfld ) ` A ) = ( ( invg ` ZZring ) ` A ) ) |
| 36 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 37 | cnfldneg | |- ( A e. CC -> ( ( invg ` CCfld ) ` A ) = -u A ) |
|
| 38 | 36 37 | syl | |- ( A e. ZZ -> ( ( invg ` CCfld ) ` A ) = -u A ) |
| 39 | 35 38 | eqtr3d | |- ( A e. ZZ -> ( ( invg ` ZZring ) ` A ) = -u A ) |
| 40 | 39 | eleq1d | |- ( A e. ZZ -> ( ( ( invg ` ZZring ) ` A ) e. I <-> -u A e. I ) ) |
| 41 | 28 40 | bitrd | |- ( A e. ZZ -> ( A e. I <-> -u A e. I ) ) |
| 42 | 41 | adantr | |- ( ( A e. ZZ /\ -u A e. NN ) -> ( A e. I <-> -u A e. I ) ) |
| 43 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 44 | 43 | adantr | |- ( ( A e. ZZ /\ -u A e. NN ) -> A e. RR ) |
| 45 | nnnn0 | |- ( -u A e. NN -> -u A e. NN0 ) |
|
| 46 | 45 | nn0ge0d | |- ( -u A e. NN -> 0 <_ -u A ) |
| 47 | 46 | adantl | |- ( ( A e. ZZ /\ -u A e. NN ) -> 0 <_ -u A ) |
| 48 | 44 | le0neg1d | |- ( ( A e. ZZ /\ -u A e. NN ) -> ( A <_ 0 <-> 0 <_ -u A ) ) |
| 49 | 47 48 | mpbird | |- ( ( A e. ZZ /\ -u A e. NN ) -> A <_ 0 ) |
| 50 | 44 49 | absnidd | |- ( ( A e. ZZ /\ -u A e. NN ) -> ( abs ` A ) = -u A ) |
| 51 | 50 | eleq1d | |- ( ( A e. ZZ /\ -u A e. NN ) -> ( ( abs ` A ) e. Prime <-> -u A e. Prime ) ) |
| 52 | 25 42 51 | 3bitr4d | |- ( ( A e. ZZ /\ -u A e. NN ) -> ( A e. I <-> ( abs ` A ) e. Prime ) ) |
| 53 | 52 | adantrl | |- ( ( A e. ZZ /\ ( A e. RR /\ -u A e. NN ) ) -> ( A e. I <-> ( abs ` A ) e. Prime ) ) |
| 54 | elznn0nn | |- ( A e. ZZ <-> ( A e. NN0 \/ ( A e. RR /\ -u A e. NN ) ) ) |
|
| 55 | 54 | biimpi | |- ( A e. ZZ -> ( A e. NN0 \/ ( A e. RR /\ -u A e. NN ) ) ) |
| 56 | 23 53 55 | mpjaodan | |- ( A e. ZZ -> ( A e. I <-> ( abs ` A ) e. Prime ) ) |
| 57 | 3 56 | biadanii | |- ( A e. I <-> ( A e. ZZ /\ ( abs ` A ) e. Prime ) ) |