This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldneg | ⊢ ( 𝑋 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝑋 ) = - 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negid | ⊢ ( 𝑋 ∈ ℂ → ( 𝑋 + - 𝑋 ) = 0 ) | |
| 2 | negcl | ⊢ ( 𝑋 ∈ ℂ → - 𝑋 ∈ ℂ ) | |
| 3 | cnring | ⊢ ℂfld ∈ Ring | |
| 4 | ringgrp | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ Grp ) | |
| 5 | 3 4 | ax-mp | ⊢ ℂfld ∈ Grp |
| 6 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 7 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 8 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 9 | eqid | ⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) | |
| 10 | 6 7 8 9 | grpinvid1 | ⊢ ( ( ℂfld ∈ Grp ∧ 𝑋 ∈ ℂ ∧ - 𝑋 ∈ ℂ ) → ( ( ( invg ‘ ℂfld ) ‘ 𝑋 ) = - 𝑋 ↔ ( 𝑋 + - 𝑋 ) = 0 ) ) |
| 11 | 5 10 | mp3an1 | ⊢ ( ( 𝑋 ∈ ℂ ∧ - 𝑋 ∈ ℂ ) → ( ( ( invg ‘ ℂfld ) ‘ 𝑋 ) = - 𝑋 ↔ ( 𝑋 + - 𝑋 ) = 0 ) ) |
| 12 | 2 11 | mpdan | ⊢ ( 𝑋 ∈ ℂ → ( ( ( invg ‘ ℂfld ) ‘ 𝑋 ) = - 𝑋 ↔ ( 𝑋 + - 𝑋 ) = 0 ) ) |
| 13 | 1 12 | mpbird | ⊢ ( 𝑋 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝑋 ) = - 𝑋 ) |