This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element is irreducible iff its negative is. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irredn0.i | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| irredneg.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | ||
| irrednegb.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | irrednegb | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐼 ↔ ( 𝑁 ‘ 𝑋 ) ∈ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredn0.i | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| 2 | irredneg.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | |
| 3 | irrednegb.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | 1 2 | irredneg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐼 ) |
| 5 | 4 | adantlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐼 ) |
| 6 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 7 | 3 2 | grpinvinv | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 8 | 6 7 | sylan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐼 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 10 | 1 2 | irredneg | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐼 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐼 ) |
| 11 | 10 | adantlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐼 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐼 ) |
| 12 | 9 11 | eqeltrrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐼 ) → 𝑋 ∈ 𝐼 ) |
| 13 | 5 12 | impbida | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐼 ↔ ( 𝑁 ‘ 𝑋 ) ∈ 𝐼 ) ) |