This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015) (Revised by AV, 10-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expghm.m | ⊢ 𝑀 = ( mulGrp ‘ ℂfld ) | |
| expghm.u | ⊢ 𝑈 = ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) | ||
| Assertion | expghm | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( ℤring GrpHom 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expghm.m | ⊢ 𝑀 = ( mulGrp ‘ ℂfld ) | |
| 2 | expghm.u | ⊢ 𝑈 = ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) | |
| 3 | expclzlem | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑥 ∈ ℤ ) → ( 𝐴 ↑ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) | |
| 4 | 3 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℤ ) → ( 𝐴 ↑ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 5 | 4 | fmpttd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) : ℤ ⟶ ( ℂ ∖ { 0 } ) ) |
| 6 | expaddz | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) | |
| 7 | zaddcl | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑦 + 𝑧 ) ∈ ℤ ) | |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝑦 + 𝑧 ) ∈ ℤ ) |
| 9 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ) | |
| 10 | eqid | ⊢ ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) = ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) | |
| 11 | ovex | ⊢ ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ∈ V | |
| 12 | 9 10 11 | fvmpt | ⊢ ( ( 𝑦 + 𝑧 ) ∈ ℤ → ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ) |
| 13 | 8 12 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ) |
| 14 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑦 ) ) | |
| 15 | ovex | ⊢ ( 𝐴 ↑ 𝑦 ) ∈ V | |
| 16 | 14 10 15 | fvmpt | ⊢ ( 𝑦 ∈ ℤ → ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) = ( 𝐴 ↑ 𝑦 ) ) |
| 17 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑧 ) ) | |
| 18 | ovex | ⊢ ( 𝐴 ↑ 𝑧 ) ∈ V | |
| 19 | 17 10 18 | fvmpt | ⊢ ( 𝑧 ∈ ℤ → ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) = ( 𝐴 ↑ 𝑧 ) ) |
| 20 | 16 19 | oveqan12d | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
| 21 | 20 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
| 22 | 6 13 21 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 23 | 22 | ralrimivva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ∀ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ℤ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 24 | zringgrp | ⊢ ℤring ∈ Grp | |
| 25 | cnring | ⊢ ℂfld ∈ Ring | |
| 26 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 27 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 28 | cndrng | ⊢ ℂfld ∈ DivRing | |
| 29 | 26 27 28 | drngui | ⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 30 | 1 | oveq1i | ⊢ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
| 31 | 2 30 | eqtri | ⊢ 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
| 32 | 29 31 | unitgrp | ⊢ ( ℂfld ∈ Ring → 𝑈 ∈ Grp ) |
| 33 | 25 32 | ax-mp | ⊢ 𝑈 ∈ Grp |
| 34 | 24 33 | pm3.2i | ⊢ ( ℤring ∈ Grp ∧ 𝑈 ∈ Grp ) |
| 35 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 36 | difss | ⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ | |
| 37 | 1 26 | mgpbas | ⊢ ℂ = ( Base ‘ 𝑀 ) |
| 38 | 2 37 | ressbas2 | ⊢ ( ( ℂ ∖ { 0 } ) ⊆ ℂ → ( ℂ ∖ { 0 } ) = ( Base ‘ 𝑈 ) ) |
| 39 | 36 38 | ax-mp | ⊢ ( ℂ ∖ { 0 } ) = ( Base ‘ 𝑈 ) |
| 40 | zringplusg | ⊢ + = ( +g ‘ ℤring ) | |
| 41 | 29 | fvexi | ⊢ ( ℂ ∖ { 0 } ) ∈ V |
| 42 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 43 | 1 42 | mgpplusg | ⊢ · = ( +g ‘ 𝑀 ) |
| 44 | 2 43 | ressplusg | ⊢ ( ( ℂ ∖ { 0 } ) ∈ V → · = ( +g ‘ 𝑈 ) ) |
| 45 | 41 44 | ax-mp | ⊢ · = ( +g ‘ 𝑈 ) |
| 46 | 35 39 40 45 | isghm | ⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( ℤring GrpHom 𝑈 ) ↔ ( ( ℤring ∈ Grp ∧ 𝑈 ∈ Grp ) ∧ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) : ℤ ⟶ ( ℂ ∖ { 0 } ) ∧ ∀ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ℤ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) ) ) |
| 47 | 34 46 | mpbiran | ⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( ℤring GrpHom 𝑈 ) ↔ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) : ℤ ⟶ ( ℂ ∖ { 0 } ) ∧ ∀ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ℤ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) ) |
| 48 | 5 23 47 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( ℤring GrpHom 𝑈 ) ) |