This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elznn0nn | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) | |
| 2 | andi | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ∨ - 𝑁 ∈ ℕ ) ) ↔ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ) ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) | |
| 3 | df-3or | ⊢ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ∨ - 𝑁 ∈ ℕ ) ) | |
| 4 | 3 | anbi2i | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℝ ∧ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ∨ - 𝑁 ∈ ℕ ) ) ) |
| 5 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 6 | 5 | pm4.71ri | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ) |
| 7 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 8 | orcom | ⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ↔ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ) | |
| 9 | 7 8 | bitri | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ) |
| 10 | 9 | anbi2i | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ) ) |
| 11 | 6 10 | bitri | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ) ) |
| 12 | 11 | orbi1i | ⊢ ( ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ↔ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ) ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
| 13 | 2 4 12 | 3bitr4i | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
| 14 | 1 13 | bitri | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |